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 Introduction, Definition and concept and of stress and strain. Hooke’s law, Stress-Strain 

diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of tapering bars 

of circular and rectangular cross sections, Elongation due to self-weight. Saint Venant’s 

principle, Compound bars, Temperature stresses, Compound section subjected to temperature 

stresses, state of simple shear, Elastic constants and their relationship. 
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1.1 Introduction 
 

In civil engineering structures, we frequently encounter structural elements such as tie members, 

cables, beams, columns and struts subjected to external actions called forces or loads.  These 

elements have to be designed such that they have adequate strength, stiffness and stability.  

 

The strength of a structural component is its ability to withstand applied forces without failure 

and this depends upon the sectional dimensions and material characteristics. For instance a steel 

rod can resist an applied tensile force more than an aluminium rod with similar diameter. Larger 

the sectional dimensions or stronger is the material greater will be the force carrying capacity.  

 

Stiffness influences the deformation as a consequence of stretching, shortening, bending, sliding, 

buckling, twisting and warping due to applied forces as shown in the following figure. In a 

deformable body, the distance between two points changes due to the action of some kind of 

forces acting on it. 

A weight suspended by two 

cables causes stretching of the 

cables. Cables are in axial 

tension. 

 

 

 

Inclined members undergo 

shortening, and stretching will 

be induced in the horizontal 

member. Inclined members 

are in axial compression and 

horizontal member is in axial 

tension. 

 

Bolt connecting the plates is subjected to 

sliding along the failure plane. Shearing 

forces are induced. 

 

Cantilever beam subjected to 

bending due to transverse loads 

results in shortening in the 

bottom half and stretching in 

the top half of the beam. 

 

Cantilever beam subjected to 

twisting and warping due to 

torsional moments. 

 

Buckling of long compression members 

due to axial load. 
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Such deformations also depend upon sectional dimensions, length and material characteristics. 

For instance a steel rod undergoes less of stretching than an aluminium rod with similar diameter 

and subjected to same tensile force. 

 

Stability refers to the ability to maintain its original configuration. This again depends upon 

sectional dimensions, length and material characteristics. A steel rod with a larger length will 

buckle under a compressive action, while the one with smaller length can remain stable even 

though the sectional dimensions and material characteristics of both the rods are same. 

 

The subject generally called Strength of Materials includes the study of the distribution of 

internal forces, the stability and deformation of various elements. It is founded both on the 

results of experiments and the application of the principles of mechanics and mathematics. The 

results obtained in the subject of strength of materials form an important part of the basis of 

scientific and engineering designs of different structural elements. Hence this is treated as subject 

of fundamental importance in design engineering.  The study of  this subject in the context of 

civil engineering refers to various methods of analyzing deformation behaviour of  structural 

elements such as plates, rods, beams, columns, shafts etc.,. 

1.2 Concepts and definitions 

 

A load applied to a structural member will induce internal forces within the member called stress 

resultants and if computed based on unit cross sectional area then they are termed as intensity of 

stress or simply stress in the member.  

The stresses induced in the structural member will cause different types of deformation in the 

member. If such deformations are computed based on unit dimensions then they are termed as 

strain in the member.  

The stresses and strains that develop within a structural member must be calculated in order to 

assess its strength, deformations and stability. This requires a complete description of the 

geometry, constraints, applied loads and the material properties of the member.  

The calculated stresses may then be compared to some measure of the strength of the material 

established through experiments. The calculated deformations in the member may be compared 

with respect limiting criteria established based on experience. The calculated buckling load of 
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the member may be compared with the applied load and the safety of the member can be 

assessed. 

It is generally accepted that analytical methods coupled with experimental observations can 

provide solutions to problems in engineering with a fair degree of accuracy. Design solutions are 

worked out by a proper analysis of deformation of bodies subjected to surface and body forces 

along with material properties established through experimental investigations.  

1.3 Simple Stress 

 

Consider the suspended bar of original length L0 and uniform cross sectional area A0 with a force 

or load P applied to its end as shown in the following figure (a).  Let us imagine that the bar is 

cut in to two parts by a section x-x and study the equilibrium of the lower portion of the bar as 

shown in figure (b). At the lower end, we have the applied force P 

 
It can be noted that, the external force applied to a body in equilibrium is reacted by internal 

forces set up within the material. If a bar is subjected to an axial tension or compression, P, then 

the internal forces set up are distributed uniformly and the bar is said to be subjected to a uniform 

direct or normal or simple stress. The stress being defined as 

       ( )   
     ( )

               ( )
 

Note 

i. This is expressed as N/mm
2
 or MPa.  

ii. Stress may thus be compressive or tensile depending on the nature of the load.  

iii. In some cases the stress may vary across any given section, and in such cases the stress at any 

point is given by the limiting value of P/A as A tends to zero. 

 

no
tes

4f
ree

.in



 
1.4 Simple Strain  

 

If a bar is subjected to a direct load, and hence a stress, the bar will change in length. If the bar 

has an original length L and changes in length by an amount L as shown below,  

 

then the strain produced is defined as follows: 

          
                 (  )

                ( )
 

This strain is also termed as longitudinal strain as it is measured in the direction of application of 

load. 

Note: 

i. Strain is thus a measure of the deformation of the member. It is simply a ratio of two quantities 

with the same units. It is non-dimensional, i.e. it has no units. 

ii. The deformations under load are very small. Hence the strains are also expressed as strain x 10 
-6

. 

In such cases they are termed as microstrain (). 

iii. Strain is also expressed as a percentage strain :  (%) = (L/L)100. 

1.5 Elastic limit – Hooke’s law 

 

A structural member is said to be within elastic limit, if it returns to its original dimensions when 

load is removed. Within this load range, the deformations are proportional to the loads producing 

them. Hooke's law states that, “the force needed to extend or compress a spring by some 

distance is proportional to that distance”.  This is indicated in the following figure. 

 

Since loads are proportional to the stresses they produce and deformations are proportional to the 

strains, the Hooke‟s law also implies that, “stress is proportional to strain within elastic limit”.  

       ( )         ( )   or    / = constant 
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This law is valid within certain limits for most ferrous metals and alloys. It can even be assumed 

to apply to other engineering materials such as concrete, timber and non-ferrous alloys with 

reasonable accuracy. 

The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as 

a Latin anagram. He published the solution of his anagram in 1678 as: “uttensio, sic vis” ("as the 

extension, so the force" or "the extension is proportional to the force"). 

 

1.6 Modulus of elasticity or Young’s modulus 

 

Within the elastic limits of materials, i.e. within the limits in which Hooke's law applies, it has 

been found that stress/strain = constant. This is termed the modulus of elasticity or Young's 

modulus. This is usually denoted by letter E and has the same units of stress. With  = P/A and  

= L/L,  the following expression for E can be derived. 

   
 

 
  
 

 

 

  
 

Young's modulus E is generally assumed to be the same in tension or compression and for most 

engineering materials has a high numerical value. Typically, E = 200000 MPa for steel. This is 

determined by conducting tension or compression test on specimens in the laboratory. 

 

1.7 Tension test 

 

In order to compare the strengths of various materials it is necessary to carry out some standard 

form of test to establish their relative properties. One such test is the standard tensile test. In this 

test a circular bar of uniform cross-section is subjected to a gradually increasing tensile load until 

failure occurs. Measurements of the change in length of a selected gauge length of the bar are 

recorded throughout the loading operation by means of extensometers. A graph of load against 

extension or stress against strain is produced. 
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1.8 Stress – Strain diagrams for ferrous metals  

 

The typical graph for a test on a mild (low carbon) steel bar is shown in the figure below. Other 

materials will exhibit different graphs but of a similar general form. Following salient points are 

to be noted: 
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i. In the initial stages of loading it can be observed that Hooke's law is obeyed, i.e. the material 

behaves elastically and stress is proportional to strain. This is indicated by the straight-line 

portion in the graph up to point A.  Beyond this, some nonlinear nature of the graph can be 

seen. Hence this point (A) is termed the limit of proportionality. This region is also called 

linear elastic range of the material. 

ii. For a small increment in loading beyond A, the material may still be elastic. Deformations 

are completely recovered when load is removed but Hooke's law does not apply. The limiting 

point B for this condition is termed the elastic limit. This region refers to nonlinear elastic 

range. It is often assumed that points A and B are coincident. 

 

iii. Beyond the elastic limit (A or B), plastic deformation occurs and strains are not totally 

recoverable. Some permanent deformation or permanent set will be there when the specimen 

is unloaded. Points C, is termed as the upper yield point, and D, as the lower yield point. It is 

often assumed that points C and D are coincident. Strength corresponding to this point is 

termed as the yield strength of the material. Typically this strength corresponds to the load 

carrying capacity.  

 

iv. Beyond point (C or D), strain increases rapidly without proportionate increases in load or 

stress. The graph covers a much greater portion along the strain axis than in the elastic range 

of the material. The capacity of a material to allow these large plastic deformations is a 

measure of ductility of the material. 
 

v. Some increase in load is required to take the strain to point E on the graph. Between D and E 

the material is said to be in the elastic-plastic state. Some of the section remaining elastic and 

hence contributing to recovery of the original dimensions if load is removed, the remainder 

being plastic.  

 

vi. Beyond E, the cross-sectional area of the bar begins to reduce rapidly over a relatively small 

length. This result in the formation of necking accompanied with reduction in load and 

fracture (cup and cone) of the bar eventually occurs at point F.  
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vii. The nominal stress at failure, termed the maximum or ultimate tensile stress, is given by the 

load at E divided by the original cross-sectional area of the bar. This is also known as the 

ultimate tensile strength of the material.  
 

viii. Owing to the large reduction in area produced by the necking process the actual stress at 

fracture is often greater than the ultimate tensile strength. Since, however, designers are 

interested in maximum loads which can be carried by the complete cross-section, the stress at 

fracture is not of any practical importance. 

 

1.9 Influence of Repeated loading and unloading on yield strength 

 

If load is removed from the test specimen after the yield 

point C has been passed, e.g. to some position S, as 

shown in the adjoining figure the unloading line ST 

can, for most practical purposes, be taken to be linear. 

A second load cycle, commencing with the permanent 

elongation associated with the strain OT, would then 

follow the line TS and continue along the previous 

curve to failure at F. It can be observed, that the repeated load cycle has the effect of increasing 

the elastic range of the material, i.e. raising the effective yield point from C to S. However, it is 

important to note that the tensile strength is unaltered. The procedure could be repeated along the 

line PQ, etc., and the material is said to have been work hardened. Repeated loading and 

unloading will produce a yield point approaching the ultimate stress value but the elongation or 

strain to failure will be very much reduced. 

1.10 Non Ferrous metals  
 

Typical stress-strain curves resulting from tensile 

tests on other engineering materials are shown in 

the following figure. 
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For certain materials, for example, high carbon steels and non-ferrous metals, it is not possible to 

detect any difference between the upper and lower yield points and in some cases yield point 

may not exist at all. In such cases a proof stress is used to indicate the onset of plastic strain.  The 

0.1% proof stress, for example, is that stress which, when removed, produces a permanent strain 

of 0.1% of the original gauge length as shown in the following figure. 

 

The 0.1% proof stress can be determined from the tensile test curve as listed below. 

 

i. Mark the point P on the strain axis which is 

equivalent to 0.1% strain.  

ii. From P draw a line parallel with the initial straight 

line portion of the tensile test curve to cut the curve 

in N.  

iii. The stress corresponding to N is then the 0.1% proof 

stress.  

iv. A material is considered to satisfy its specification if 

the permanent set is no more than 0.1% after the 

proof stress has been applied for 15 seconds and 

removed. 

1.11 Allowable working stress-factor of safety 
 
 

The most suitable strength criterion for any structural element under service conditions is that 

some maximum stress must not be exceeded such that plastic deformations do not occur. This 

value is generally known as the maximum allowable working stress. Because of uncertainties of 

loading conditions, design procedures, production methods etc., it is a common practice to 

introduce a  factor of safety into structural designs. This is defined as follows: 

                  
             (               )

                       
 

1.12 Ductile materials  
 

The capacity of a material to allow large extensions, i.e. the ability to be drawn out plastically, is 

termed its ductility. A quantitative value of the ductility is obtained by measurements of the 

percentage elongation or percentage reduction in area as defined below. 

no
tes

4f
ree

.in



 

              
                                    

                     
       

                     
                                      

             
       

Note: 

A property closely related to ductility is malleability, which defines a material's ability to be hammered out into thin 

sheets. Malleability thus represents the ability of a material to allow permanent extensions in all lateral directions 

under compressive loadings. 

1.13 Brittle materials 
 

A brittle material is one which exhibits relatively small extensions 

to fracture so that the partially plastic region of the tensile test 

graph is much reduced.  There is little or no necking at fracture for 

brittle materials. Typical tensile test curve for a brittle material 

could well look like the one shown in the adjoining figure.  

 

1.14 Lateral strain and Poisson’s ratio 
 

Till now we have focused on the longitudinal strain induced in the direction of application of the 

load. It has been observed that deformations also take place in the lateral direction. Consider the 

rectangular bar shown in the figure below and subjected to a tensile load. 

 

 

 

 

 

 

 

Under the action of this load the bar will increase in length by an amount L giving a 

longitudinal strain in the bar: L = L/L.  The bar will also exhibit, however, a reduction in 

dimensions laterally, i.e. its breadth and depth will both reduce. The associated lateral strains will 

both be equal, and are of opposite sense to the longitudinal strain. These are computed as :  lat = 

b/b = d/d.  

 

no
tes

4f
ree

.in



 
It has been observed that within the elastic range the ratio of the lateral and longitudinal strains 

will always be constant. This ratio is termed Poisson's ratio (). 

   
    
  

 

The above equation can also be written as : 

           
 

 
 

For most of the engineering materials the value of  is found to be between 0.25 and 0.33. 

 

 

Example 1 
 

A bar of a rectangular section of 20 mm × 30 mm and a length of 500 mm is subjected to an axial 

compressive load of 60 kN. If E = 102 kN/mm2 and v  = 0.34, determine the changes in the 

length and the sides of the bar. 

 Since the bar is subjected to compression, there will be decrease in length, increase in 

breadth and depth. These are computed as shown below 

 L = 500 mm, b = 20 mm, d = 30 mm, P = 60 x1000 = 60000 N,  E = 102000 N/mm
2 

 Cross-sectional area A = 20 × 30 = 600 mm
2 

 Compressive stress  = P/A = 60000/600 = 100 N/mm
2 

 Longitudinal strain L = /E = 100/102000 = 0.00098 

 Lateral strain lat =  L =  0.34 x 0.00098 = 0.00033 

 Decrease in length L = L L = 0.00098 x 500 = 0.49 mm   

 Increase in breadth b = lat b = 0.00033 x 20 = 0.0066 mm 

 Increase in depth d = lat d = 0.00033 x 30 = 0.0099 mm 

Example 2 
 

Determine the stress in each section of the bar shown in the following figure when subjected to 

an axial tensile load of 20 kN. The central section is of square cross-section; the other portions 

are of circular section. What will be the total extension of the bar? For the bar material E = 

210000MPa. 
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The bar consists of three sections with change in diameter. Loads are applied only at the ends. The stress 

and deformation in each section of the bar are computed separately. The total extension of the bar is then 

obtained as the sum of extensions of all the three sections. These are illustrated in the following steps. 

 

The bar is in equilibrium under the action of applied forces 

Stress in each section of bar = P/A and P = 20000N 

i. Area of Bar A =  x 20
2
/4 = 314.16 mm

2
 

ii. Stress in Bar A : A = 20000/ 314.16 = 63.66MPa 

iii. Area of Bar B = 30 x30 = 900 mm
2
 

iv. Stress in Bar B : B = 20000/ 900 = 22.22MPa 

v. Area of Bar C =  x 15
2
/4 = 176.715 mm

2
 

vi. Stress in Bar C : C = 20000/ 176.715 = 113.18MPa 

Extension of each section of bar = L/E and E = 210000 MPa 

i. Extension of Bar A = 63.66 x 250 / 210000= 0.0758 mm 

ii. Extension of Bar B = 22.22 x 100 / 210000= 0.0106 mm 

iii. Extension of Bar C = 113.18 x 400 / 210000= 0.2155 mm 

Total extension of the bar = 0. 302mm 

Example 3 

 

Determine the overall change in length of the bar shown in the figure below with following data: 

E = 100000 N/mm
2 
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The bar is with varying cross-sections and subjected to forces at ends as well as at other interior 

locations. It is necessary to study the equilibrium of each portion separately and compute the change in 

length in each portion. The total change in length of the bar is then obtained as the sum of extensions of 

all the three sections as shown below.  

 

Forces acting on each portion of the bar for equilibrium  

 

Sectional Areas 

   
     

 
            ;     

     

 
                  

     

 
            

Change in length in Portion I 

Portion I of the bar is subjected to an axial compression of 30000N. This results in decrease in 

length which can be computed as 

     
    
   

  
         

             
          

Change in length in Portion II 

Portion II of the bar is subjected to an axial compression of 50000N ( 30000 + 20000). This 

results in decrease in length which can be computed as 

     
      
    

  
         

             
         

Change in length in Portion III 

Portion III of the bar is subjected to an axial compression of (50000 – 34000) = 16000N. This 

results in decrease in length which can be computed as 
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Since each portion of the bar results in decrease in length, they can be added without any 

algebraic signs.  

Hence Total decrease in length = 0.096 + 0.455 + 0.306 = 0.857mm 

Note: 

For equilibrium, if some portion of the bar may be subjected to tension and some other portion 

to compression resulting in increase or decrease in length in different portions of the bar.  In 

such cases, the total change in length is computed as the sum of change in length of each portion 

of the bar with proper algebraic signs. Generally positive sign (+) is used for increase in length 

and negative sign (-) for decrease in length. 

1.15 Elongation of tapering bars of circular cross section 

 
 

Consider a circular bar uniformly tapered from diameter d1 at one end and gradually increasing 

to diameter d2 at the other end over an axial length L as shown in the figure below. 

 

Since the diameter of the bar is continuously changing, the elongation is first computed over an 

elementary length and then integrated over the entire length.  Consider an elementary strip of 

diameter d and length dx at a distance of x from end A. 

Using the principle of similar triangles the following equation for d can be obtained 

       
     
 

                  
     
 

 

Cross–sectional area of the bar at x :     
  (     )

 

 
  

Axial stress at x:    
 

  
  

  

  (     )
   

Change in length over dx :          
 
       

   (     )
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Total change in length:    ∫
     

   (     )
 

 
          [

(     )
  

  
]
 

 

 

                                 
   

    
[

 
(     )

]

 

 

 

                                  
   

    
[

 
(     )

 
 
  
 ] 

                                
   

    
[
 
  
  

 
(     )

] 

    (     )     
     
 

        

                                
   

    
[
 
  
  
 
  
]   

   

    
[
     
    

] 

Substituting for   
      

 
 in the above expression, following equation for elongation of 

tapering bar of circular section can be obtained 

Total change in length:    
    

       
 

Example 4 
 

A bar uniformly tapers from diameter 20 mm at one end to diameter 10 mm at the other end 

over an axial length 300 mm. This is subjected to an axial compressive load of 7.5 kN. If E = 

100 kN/mm
2
, determine the maximum and minimum axial stresses in bar and the total change 

in length of the bar. 

 

P = 7500 N, E = 100000 N/mm
2 , 

d1 = 10mm, d2 = 20mm,L = 300mm 

 Minimum compressive stress occurs at d2 = 20mm as the sectional area is maximum. 

 Area at d2 = 
      

 
           

      
    

      
          

 Maximum compressive stress occurs at d1 = 10mm as the sectional area is minimum. 

 Area at d1 = 
      

 
          

      
    

     
         

 Total decrease in length:    
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1.16 Elongation of tapering bars of rectangular cross section 
 

Consider a bar of same thickness t throughout its length, tapering uniformly from a breadth B at 

one end to a breadth b at the other end over an axial length L. The flat is subjected to an axial 

force P as shown in the figure below. 

 

 
Since the breadth of the bar is continuously changing, the elongation is first computed over an 

elementary length and then integrated over the entire length.  Consider an elementary strip of 

breadth bx and length dx at a distance of x from left end. 

Using the principle of similar triangles the following equation for bx can be obtained 

       
   

 
                 

   

 
 

 

Cross–sectional area of the bar at x :         (    )  

Axial stress at x:    
 

  
  

 

(    ) 
  

Change in length over dx :          
 
      
  (    )  

Total change in length:    ∫
    

  (    ) 
 
      

    
[   (    )]

 

 
 

                                 
  
    

[  (    )     ( )] 

    (    )    
   

 
       

                                
  
    

[  ( )     ( )]  
  
    

   (  ⁄ ) 

Substituting for   
   

 
 in the above expression, following equation for elongation of tapering 

bar of rectangular section can be obtained 

   
   

  (   ) 
   (  ⁄ ) 
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Example 5 

An aluminium flat of a thickness of 8 mm and an axial length of 500 mm has a width of 15 

mm tapering to 25 mm over the total length. It is subjected to an axial compressive force P, so 

that the total change in the length of flat does not exceed 0.25 mm. What is the magnitude 

of P, if E = 67,000 N/mm
2
 for aluminium? 

t = 8mm, B = 25mm,b = 15mm, L = 500 mm, L = 0.25 mm, E = 67000MPa, P =? 

  
   (   )  

  (  ⁄ ) 
  
            (     )      

  (    ⁄ )     
           

Note:  

Instead of using the formula, this problem can be solved from first principles as indicated in 

section 1.16. 

1.17 Elongation in Bar Due to Self-Weight 

 

Consider a bar of a cross-sectional area of A and a length L is 

suspended vertically with its upper end rigidly fixed as shown in the 

adjoining figure. Let the weight density of the bar is . Consider a 

section y- y at a distance y from the lower end. 

Weight of the portion of the bar below y-y =  A y 

Stress at y-y : y =  A y /A =  y  

Strain at y-y : y =  y / E 

Change in length over dy: dy =  y dy / E 

Total change in length :     ∫
     

 

 

 
 [

   

  
] 
  

   

  
   

This can also be written as :     
(   ) 

   
  

  

   
   

W =  A L represents the total weight of the bar 

 

Note: 

The stress in the bar gradually increases linearly from zero at bottom 

to  L at top as shown below. 
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Example 6 
 

A stepped steel bar is suspended vertically. The diameter in 

the upper half portion is 10 mm, while the diameter in the 

lower half portion is 6 mm. What are the stresses due to 

self-weight in sections B and A as shown in the figure. E = 

200 kN/mm
2
. Weight density,  = 0.7644x10

-3
 N/mm

3
. 

What is the change in its length if E = 200000 MPa? 

 

Stress at B will be due to weight of portion of the bar BC 

Sectional area of BC: A2 =  x 6
2
/4 = 28.27 mm

2 

Weight of portion BC: W2 =  A2 L2 = 0.7644x 10
-3

 x 28.27 x 1000 = 21.61N 

Stress at B: B = W2/A2 =  21.61/28.27 = 0.764 MPa 

 

Stress at A will be due to weight of portion of the bar BC + AB 

Sectional area of AB: A1=  x 10
2
/4 = 78.54 mm

2 

Weight of portion AB: W1 =  A1 L1 = 0.7644x 10
-3

 x 78.54 x 1000 = 60.04N 

Stress at A: c = (W1+W2)/A1 =  (60.04+ 21.61) / 78.54 = 1.04 MPa 

 

Change in Length in portion BC  

This is caused due to weight of BC and is computed as:  

       
    

    
  

          

              
 = 0.00191mm 

 

Change in Length in portion AB  

This is caused due to weight of AB and due to weight of BC acting as a concentrated load at B 

and is computed as: 

       
    

    
  

    

    
  

          

              
 

          

               
  0.0033mm 

 

Total change in length = 0.00191+ 0.0033 = 0.00521mm 

1.18 Saint Venant’s principle 
 

In 1855, the French Elasticity theorist Adhemar Jean Claude Barre de Saint-Venant stated that 

the difference between the effects of two different but statically equivalent loads becomes very 

small at sufficiently large distances from the load. The stresses and strains in a body at points 

that are sufficiently remote from points of application of load depend only on the static resultant 

of the loads and not on the distribution of loads. 
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Stress concentration is the increase in stress along the cross-section that maybe caused by a point 

load or by any another discontinuity such as a hole which brings about an abrupt change in the 

cross sectional area. 

 

In St.Venant‟s Principle experiment, we fix two strain gages, one near the central portion of the 

specimen and one near the grips of the Universal Testing Machine‟s (UTM) upper (stationary) 

holding chuck.. The respective strain values obtained from both the gages are measured and then 

plotted with respect to time. Since stress is proportional to strain, as per St.Venant‟s principle, 

the stress will be concentrated near the point of application of load. Although the average stress 

along the uniform cross section remains constant, at the point of application of load, the stress is 

distributed as shown in figure below with stress being concentrated at the load point. The further 

the distance from the point of application of load, the more uniform the stress is distributed 

across the cross section.  

 

1.19 Compound or composite bars 
 

A composite bar can be made of two bars of different materials rigidly fixed together so that both 

bars strain together under external load. As the strains in the two bars are same, the stresses in 

the two bars will be different and depend on their respective modulus of elasticity. A stiffer bar 

will share major part of external load.  

 

In a composite system the two bars of different materials may act as suspenders to a third rigid 

bar subjected to loading. As the change in length of both bars is the same, different stresses are 

produced in two bars.  

no
tes

4f
ree

.in



 
1.19.1 Stresses in a Composite Bar 
 

Let us consider a composite bar consisting of  a solid bar, of diameter d completely encased in a 

hollow tube of outer diameter D and inner diameter d, subjected to a tensile force P as shown 

in the following figure.  

 

Let the extension of composite bar of length L be δL. Let ES and EH be the modulus of elasticity 

of solid bar and hollow tube respectively. Let S and H be the stresses developed in the solid bar 

and hollow tube respectively. 

Since change in length of solid bar is equal to the change in length of hollow tube, we can 

establish the relation between the stresses in solid bar and hollow tube as shown below : 

    

  
 
    

  
  or        

  

  
 

Area of cross section of the hollow tube :    
 (      )

 
  

Area of cross section of the solid bar :    
   

 
 

 

Load carried by the hollow tube :         and  Load carried by the solid bar :         

 

But P = PS + PH  = S AS + H AH 

 

With        
  

  
 , the following equation can be written 

      
  
  
            (   

  
  
  )   

 

ES/EH is called modular ratio. Using the above equation stress in the hollow tube can be 

calculated. Next, the stress in the solid bar can be calculated using the equation P = S AS + H 

AH. 
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Example 7 

 

A flat bar of steel of 24 mm wide and 6 mm thick is placed between two aluminium alloy flats 24 

mm × 9 mm each. The three flats are fastened together at their ends. An axial tensile load of 20 

kN is applied to the composite bar. What are the stresses developed in steel and aluminium 

alloy? Assume ES = 210000 MPa and EA = 70000MPa. 

 

Area of Steel flat: AS = 24 x 6 = 144 mm
2 

 

Area of Aluminium
 
alloy flats: AA = 2 x 24 x 9 = 432 mm

2 

 

 

Since all the flats elongate by the same extent, we have the condition that   
    

  
 
    

  
. 

 

The relationship between the stresses in steel and aluminum flats can be established as:    

       
  
  
        

Since  P = PS + PA  = S AS + A AA . This can be written as  

                     (      ) 

 

 From which stress in aluminium alloy flat can be computed as: 

 

     
 

(      )
 

        

(         )
           

 

Stress in steel flat can be computed as:  
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Example 8 

 

A short post is made by welding steel plates into a 

square section and then filling inside with concrete. The 

side of square is 200 mm and the thickness t = 10 mm 

as shown in the figure.  The steel has an allowable stress 

of 140 N/mm
2
 and the concrete has an allowable stress 

of 12 N/mm
2
. Determine the allowable safe 

compressive load on the post. EC = 20 GPa, Es = 200 

GPa.  

 

Since the composite post is subjected to compressive load, both concrete and steel tube will 

shorten by the same extent. Using this condition following relation between stresses in concrete 

and steel can be established. 

    

  
 
    

  
 or         

  

  
        

 

Assume that load is such that s = 140 N/mm
2
. Using the above relationship, the stress in 

concrete corresponding to this load can be calculated as follows: 

                           
   > 12 N/mm

2
 

Hence the assumed load is not a safe load.  

 

Instead assume that load is such that c = 12 N/mm
2
. The stress in steel corresponding to this 

load can be calculated as follows: 

                           
   < 140 N/mm

2
 

 

Hence the assumed load is a safe load which is calculated as shown below. 

 

Area of concrete section Ac = 180 x180 = 32400mm
2
. 

Area of steel tube As = 200 x 200 – 32400  = 7600 mm
2
. 
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Example 9 

 

A rigid bar is suspended from two wires, one of steel and other of copper, length of the wire is 

1.2 m and diameter of each is 2.5 mm. A load of 500 N is suspended on the rigid bar such that 

the rigid bar remains horizontal. If the distance between the wires is 150 mm, determine the 

location of line of application of load. What are the stresses in each wire and by how much 

distance the rigid bar comes down? Given Es = 3Ecu= 201000 N/mm
2
. 

 

 

i. Area of copper wire (Acu) = Area of steel wire(As) =  x 2.5
2
/4 = 4.91 mm

2
 

 

 

ii. For the rigid bar to be horizontal, elongation of both the wires must be same. This condition 

leads to the following relationship between stresses in steel and copper wires as: 

    
  
   

          

 

iii. Using force equilibrium, the stress in copper and steel wire can be calculated as: 

P = Ps + Pcu = s As + cu Acu  = 3 cu As + cu Acu  = cu (3As + Acu) 

    
 

(        )
  

   

(            )
           

                     

 

iv. Downward movement of rigid bar = elongation of wires 
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v. Position of load on the rigid bar is computed by equating moments of forces carried by steel and 

copper wires about the point of application of load on the rigid bar. 

 

         (     ) 

(          )  (          ) (     ) 
 

     
       

 
                          

Note: 

If the load is suspended at the centre of rigid bar, then both steel and copper wire carry the same 

load. Hence the stress in the wires is also same.  As the moduli of elasticity of wires are different, 

strains in the wires will be different. This results in unequal elongation of wires causing the rigid 

bar to rotate by some magnitude. This can be prevented by offsetting the load or with wires 

having different length or with different diameter such that elongation of wires will be same. 

 

Example 10 

 
 

A load of 2MN is applied on a column 500mm x 500mm. The column is reinforced with four 

steel bars of 12mm dia, one in each corner. Find the stresses in concrete and steel bar. Es = 2.1 

x10
5
 N/mm

2
 and Ec = 1.4 x 10

4
 N/mm

2
. 

 

i. Area of steel bars:  As=  4 x ( x 12
2
/4) = 452.4 mm

2
 

ii. Area of concrete: Ac = 500 x500 – 452.4 = 249547.6 mm
2
 

iii. Relation between stress in steel and concrete :    
  

  
    

       

       
        

iv. P = Ps + Pc = s As + c Ac  = 15 c As + c Ac  = c (15As + Ac) 

v.                       
 

(        )
  

     

(                   )
         

vi.                                       
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1.20 Temperature stresses in a single bar 

 
 

If a bar is held between two unyielding (rigid) supports and its temperature is raised, then a 

compressive stress is developed in the bar as its free thermal expansion is prevented by the rigid 

supports. Similarly, if its temperature is reduced, then a tensile stress is developed in the bar as 

its free thermal contraction is prevented by the rigid supports. Let us consider a bar of 

diameter d and length L rigidly held between two supports as shown in the following figure. Let 

 α be the coefficient of linear expansion of the bar and its temperature is raised by ∆T (°C) 

 

 Free thermal expansion in the bar =  α ∆T L. 

 Since the supports are rigid, the final length of the bar does not change. The fixed ends 

exert compressive force on the bar so as to cause shortening of the bar by α ∆T L. 

 Hence the compressive strain in the bar = α ∆T L / L = α ∆T 

 Compressive stress = α ∆T E  

 Hence the thermal stresses introduced in the bar = α ∆T E  

Note: 

The bar can buckle due to large compressive forces generated in the bar due to temperature 

increase or may fracture due to large tensile forces generated due to temperature decrease. 

 

Example 11 

 
 

A rail line is laid at an ambient temperature of 30°C. The rails are 30 m long and there is a 

clearance of 5 mm between the rails. If the temperature of the rail rises to 60°C, what is the stress 

developed in the rails?. Assume  α = 11.5 × 10
−
6/°C, E = 2,10,000 N/mm

2 
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 L = 30,000 mm, α = 11.5 × 10

−6
/°C, Temperature rise ∆T = 60-30  = 30

o
C 

 Free expansion of rails = α ∆T L = 11.5 × 10
−6  × 30 × 30000 = 10.35mm 

 Thermal expansion prevented by rails = Free expansion – clearance = 10.35 – 5 = 5.35mm 

 Strain in the rails  = 5.35/30000 = 0.000178 

 Compressive stress in the rails =  x E = 0.000178 x 210000 =37.45N/mm
2. 

 

1.21 Temperature Stresses in a Composite Bar 

 
 

A composite bar is made up of two bars of different materials perfectly joined together so that 

during temperature change both the bars expand or contract by the same amount. Since the 

coefficient of expansion of the two bars is different thermal stresses are developed in both the 

bars. Consider a composite bar of different materials with coefficients of expansion and modulus 

of elasticity, as α1, E1 and α2, E2, respectively, as shown in the following figure. Let the 

temperature of the bar is raised by ∆T and α1 > α2 

 

Free expansion in bar 1 = α1 ∆T L and Free expansion in bar 2 = α2 ∆T L. Since both the bars 

expand by ∆L together we have the following conditions: 

 Bar 1: ∆L < α1 ∆T L. The bar gets compressed resulting in compressive stress 

 Bar 2: ∆L > α2∆T L. The bar gets stretched resulting in tensile stress. 

Compressive strain in Bar 1 :    
         

 
 

Tensile strain in Bar 2 :    
          

 
 

       
         

 
 
          

 
  (     )   

Let 1 and 2 be the temperature stresses in bars. The above equation can be written as: 
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 (     )   

In the absence of external forces, for equilibrium, compressive force in Bar 1 = Tensile force in 

Bar 2. This condition leads to the following relation 

               

Using the above two equations, temperature stresses in both the bars can be computed. This is 

illustrated in the following example. 

Note: 

If the temperature of the composite bar is reduced, then a tensile stress will be developed in bar 

1 and a compressive stress will be developed in bar 2 , since α1 > α2. 

Example 12 

 

A steel flat of 20 mm × 10 mm is fixed with aluminium flat of 20 mm × 10 mm so as to make a 

square section of 20 mm × 20 mm. The two bars are fastened together at their ends at a 

temperature of 26°C. Now the temperature of whole assembly is raised to 55°C. Find the stress 

in each bar. Es = 200 GPa, Ea = 70 GPa, αs = 11.6 × 10
−6

/°C, αa = 23.2 × 10
−6

/°C. 

 

 Net temperature rise, ∆T = 55 − 26 = 29°C. 

 Area of Steel flat (As) = Area of Aluminium flat (Aa) = 20 x10 =200 mm2 

                                            will be one  of the conditions to be 

satisfied by the composite assembly. 

     
  

  
 
  

  
 (     )   (         )        

            

 
  

      
 

  

     
           

                       

   (       )     (           )             as αa > αs 

 

Example 13 
 

A flat steel bar of 20 mm × 8 mm is placed between two copper bars of 20 mm × 6 mm each so 

as to form a composite bar of section of 20 mm × 20 mm. The three bars are fastened together at 

their ends when the temperature of each is 30°C. Now the temperature of the whole assembly is 
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raised by 30°C. Determine the temperature stress in the steel and copper bars. Es = 2Ecu= 210 

kN/mm
2
, αs = 11 × 10

−6
/°C, αcu = 18 × 10

−6
/°C. 

 Net temperature rise, ∆T = 30°C. 

 Area of Steel flat (As) =  20 x 8 = 160 mm
2
 

 Area of Copper flats (Acu) = 2 x 20 x 6 =240 mm
2
 

                                                  will be one  of the conditions to be 

satisfied by the composite assembly. 

     
   

   
 
  

  
 (      )   (     )        

           

 
   

      
 

      

      
            

  cu = 12.6MPa (compressive) and s = 18.9MPa (tensile) as αcu > αs 

1.22 Simple Shear stress and Shear Strain 

 

Consider a rectangular block which is fixed at the bottom and a force F is applied on the top 

surface as shown in the figure (a) below.  

 

Equal and opposite reaction F develops on the bottom plane and constitutes a couple, tending to 

rotate the body in a clockwise direction. This type of shear force is a positive shear force and the 

shear force per unit surface area on which it acts is called positive shear stress (). If force is 

applied in the opposite direction as shown in Figure (b), then they are termed as negative shear 

force and shear stress. 

The Shear Strain ()  = AA‟/AD = tan. Since  is a very small quantity, tan  .  Within the 

elastic limit,     or  = G   

The constant of proportionality G is called rigidity modulus or shear modulus. 
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Note:  

Normal stress is computed based on area perpendicular to the surface on which the force is 

acting, while, the shear stress is computed based on the surface area on which the force is 

acting. Hence shear stress is also called tangential stress. 

1.23 Complementary Shear Stresses 

 

Consider an element ABCD subjected to shear stress () as shown in figure (a).  We cannot have 

equilibrium with merely equal and opposite tangential forces on the faces AB and CD as these 

forces constitute a couple and induce a turning moment.  The statical equilibrium demands that 

there must be tangential components (‟) along AD and CB such that that can balance the 

turning moment. These tangential stresse (‟) is termed as complimentary shear stress. 

 

Let t be the thickness of the block.   Turning moment due to  will be  ( x t x LAB ) LBC and 

Turning moment due to ’ will be (‟ x t x LBC ) LAB. Since these moments have to be equal for 

equilibrium we have:    

( x t x LAB ) LBC = (‟ x t x LBC ) LAB. 

From which it follows that  = ‟ , that is, intensities of shearing stresses across two mutually 

perpendicular planes are equal.  

1.24 Volumetric strain 

 
 

This refers to the slight change in the volume of the body resulting from three mutually 

perpendicular and equal direct stresses as in the case of a body immersed in a liquid under 

pressure. This is defined as the ratio of change in volume to the original volume of the body.  
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Consider a cube of side „a‟ strained so that each side becomes „a  a’.  

 Hence the linear strain = a/a.   

 Change in volume = (a  a)
3
 –a

3
 =  3a

2
a. (ignoring small higher order terms) 

 Volumetric strain v =  3a
2 
a/a

3 
=  3 a/a 

 The volumetric strain is three times the linear strain 

 

1.25 Bulk Modulus 
 

This is defined as the ratio of the normal stresses (p) to the volumetric strain  (v) and denoted by 

‘K’. Hence   K = p/v . This is also an elastic constant of the material in addition to E, G and .  

1.26 Relation between elastic constants 

 

1.26.1 Relation between E,G and  

 

Consider a cube of material of side „a' subjected to the action of the shear and complementary 

shear stresses and producing the deformed shape as shown in the figure below. 

 

 

 Since, within elastic limits, the strains are small and the angle ACB may be taken as 45
0
. 

 Since angle between OA and OB is very small hence OA  OB. BC, is the change in the 

length of the diagonal OA 

 Strain on the diagonal OA = Change in length / original length = BC/OA  

= AC cos45/ (a/sin45) = AC/ 2a =  a  / 2 a  =   / 2 

 It is found that strain along the diagonal is numerically half the amount of shear stain. 

 But from definition of rigidity modulus we have, G =  / 

 Hence, Strain on the diagonal OA =  / 2G 

no
tes

4f
ree

.in



 
The shear stress system is equivalent or can be replaced by a system of direct stresses at 45

0
 as 

shown below. One set will be compressive, the other tensile, and both will be equal in value to 

the applied shear stress. 

 

Strain in diagonal OA due to direct stresses = 
  

 
   

  

 
  

 

 
   

 

 
 
 

 
(    )  

Equating the strain in diagonal OA  we have 
 

  
 
 

 
(    )   

 

Relation between E,G and  can be expressed as :     (   ) 

 

1.26.2 Relation between E,K and  

 

Consider a cube subjected to three equal stresses a shown in the figure below. 

 

 
 

Strain in any one direction = 
 

 
   

 

 
   

 

 
 
 

 
 (     ) 

 

Since the volumetric strain is three times the linear strain:     
 
 
 (     ) 

From definition of bulk modulus :     
 
 
 

 

 
 
 
 (     )  

 
 
  

 

Relation between E,K and  can be expressed as :     (    ) 

 

Note: Theoretically  < 0.5 as E cannot be zero 
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1.26.3 Relation between E, G and K  

 

We have E = 2G(1+) from which  = (E - 2G) / 2G 

We have E = 3K(1-2) from which  = (3K -E) / 6K 

 

(E - 2G) / 2G = (3K -E) / 6K or   (6EK - 12GK) = (6GK - 2EG)  or 6EK+2EG = (6GK +12GK)  

  

Relation between E,G and K can be expressed as:     
   

(    )
 

 

1.27 Exercise problems 

 
 

1. A steel bar of a diameter of 20 mm and a length of 400 mm is subjected to a tensile force of 

40 kN. Determine (a) the tensile stress and (b) the axial strain developed in the bar if the 

Young‟s modulus of steel E = 200 kN/mm
2
  

Answer: (a) Tensile stress = 127.23MPa, (b) Axial strain = 0.00064 

 

2. A 100 mm long bar is subjected to a compressive force such that the stress developed in the 

bar is 50 MPa. (a) If the diameter of the bar is 15 mm, what is the axial compressive force? 

(b) If E for bar  is 105 kN/mm
2
, what is the axial strain in the bar? 

Answer: (a) Compressive force = 8.835 kN, (b) Axial strain = 0.00048 

 

3. A steel bar of square section 30 × 30 mm and a length of 600 mm is subjected to an axial 

tensile force of 135 kN. Determine the changes in dimensions of the bar.  E = 200 

kN/mm
2
, v = 0.3. 

Answer: Increase in length δl = 0.45 mm, Decrease in breadth δb = 6.75 × 10
−3

 mm, 

 

4. A stepped circular steel bar of a length of 150 mm with diameters 20, 15 and 10 mm along 

lengths 40, 50 and 65 mm, respectively, subjected to various forces is shown in figure below. 

If E = 200 kN/mm
2
, determine the total change in its length.  

 

 
Answer : Total decrease in length = 0.022mm 
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5. A stepped bar is subjected to axial loads as shown in the figure below. If E = 200 GPa, 

calculate the stresses in each portion AB, BC and CD. What is the total change in length of 

the bar? 

 
Answer: Total increase in length = 0.35mm 

6. A 400-mm-long aluminium bar uniformly tapers from a diameter of 25 mm to a diameter of 

15 mm. It is subjected to an axial tensile load such that stress at middle section is 60 MPa. 

What is the load applied and what is the total change in the length of the bar if E = 67,000 

MPa? (Hint: At the middle diameter = (25+15)/2 = 20 mm). 

Answer: Load = 18.85kN, Increase in length = 0.382 mm 

 

7. A short concrete column of 250 mm × 250 mm in section strengthened by four steel bars near 

the corners of the cross-section. The diameter of each steel bar is 30 mm. The column is 

subjected to an axial compressive load of 250 kN. Find the stresses in the steel and the 

concrete. Es = 15 Ec = 210 GPa. If the stress in the concrete is not to exceed 2.1 N/mm
2
, 

what area of the steel bar is required in order that the column may support a load of 350 kN? 

Answer: Stress in concrete = 2.45N/mm
2
, Stress in steel = 36.75N/mm2, Area of steel = 7440 mm

2 

 

8. Two aluminium strips are rigidly fixed to a steel strip of section 25 mm × 8 mm and 1 m 

long. The aluminium strips are 0.5 m long each with section 25 mm × 5 mm. The composite 

bar is subjected to a tensile force of 10 kN as shown in the figure below. Determine the 

deformation of point B. Es = 3EA = 210 kN/mm
2
. Answer: 0.203mm 

(Hint: Portion CB is a single bar, Portion AC is a composite bar. Compute elongation 

separately for both the portions and add) 
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3.1 INTRODUCTION 
 

Cylinders are pressure vessels such as pipes, steam boilers, storage tanks, etc., which carry gas or 

fluid under pressure.  A cylinder is said to be thin if the thickness  
10

1
 internal diameter and 

thick if the thickness > 
10

1
internal diameter. 

3.2 TYPES OF STRESSES IN CYLINDERS 

The walls of the cylinders are 

generally subjected to three types of normal stresses which are discussed below. The enlarged 

view of a portion of the wall on which the three stresses are acting is shown in Fig.1. 

3.2.1 Circumferential Stress c  

It is the normal stress which acts along the circumference 

of the cylinder (Fig.1).  It is also called as hoop stress or 

girth stress. It is denoted as c. 

3.2.2 Longitudinal Stress l  

It is the normal stress which acts along the length of the 

cylinder (Fig.1). It is denoted as l. 

3.2.3  Radial Stress r  

It is the normal stress which acts along the radial direction (Fig.1). It is denoted as r. 

3.3 THIN CYLINDER THEORY  

3.3.1 Assumptions 

The assumptions made in the thin cylinder theory are; 

 The magnitude of radial stress being very small is neglected. 

 The distribution of circumferential stress across the cross-section is assumed to be uniform 

since the thickness of the cylinder wall is very small. 

3.3.2 Circumferential and Longitudinal Stresses in Thin Cylinders 

 subjected to an 

 as shown in Fig. 2. 

 

d 
L 

 

l 

c 
l 

c 

r 

t 

t 

Fig. 1 Wall of thin cylinder subjected 

to three stresses c l an r. 
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Circumferential Stress ( c) 

Consider the longitudinal section A  A through the cylinder as shown in Fig.2. The free body 

diagram of the lower-half portion of the cylinder is shown in Fig. 3.  

  

 

 

It is apparent that the total burst 1

cutting plane A - A, is resisted by equal forces P acting on each cut surface of the cylinder wall.  

Applying the equilibrium condition, 

        V = 0   + ve]  

            F1 + 2P = 0                                 (1) 

But     F1 = (p) (d l)   and  P = ( c t l) 

Substituting in eq. (1)      p d l + 2 [ c t l] = 0 

                 c = 
t

dp

2
                   (2) 

Longitudinal Stress l  

Consider Take a 

transverse section B-B as shown in Fig. 4. The free body diagram of cut portion of the thin 

cylinder to the right of transverse section B-B is also shown in Fig. 4. It is apparent that the total 

2 l developed on the 

cylinder wall at the cut surface B-B.   

A 

 t                    d                    t 

p 

 

P F1 P 

t            d           t 

l 

Fig. 2 Thin cylinder of internal diameter 
d t l

p  

Fig. 3 Free body diagram of the 
lower-half portion of the cylinder 
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Applying the equilibrium condition, 

H = 0 [  + ve] 

F2 - l (A) = 0         (3)  

But      F2 = p 2

4
d  

For thin cylinders, the cross sectional area can be approximated as  

A = Perimeter x thickness = (  d) t 

Substituting in (3) 

p 2

4
d  - l (  d t ) = 0 

Hence  l = 
t

dp

4
                     (4) 

Comparing (2) and (4)            c l     (5) 

Circumferential stress =  2  x  Longitudinal stress 

3.3.3 s max) 

c and the 

longitudinal stress l, which are normal stresses (Fig. 5). Since the element is free of shear stress, 

the above stresses are themselves the principal stresses.  

 

 

Fig. 4 Closed thin cylinder showing bursting force F2 and Free body diagram of 
the cylinder towards right of B-B 
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Therefore,   s max  = 
2

21 nn                    (6) 

where    n1 = maximum principal stress  

 n2 = minimum principal stress  

Here,    n1 c = 
t

dp

2
     and     n2 = l = 

t

pd

4
    (7) 

Substituting eq. (7) in eq. (6), and simplifying  

s max = 
t

dp

8
        (8) 

Note: On any plane, if shear stress is absent, normal stress acting on the plane is called principal 

stress. 

3.3.4 Expressions for Changes in Diameter, Length and Volume 

The two principal stresses which are acting at any point in the wall of a thin cylinder shell are,  

n1 = c = circumferential stress and  n2 l = longitudinal stress.  Let c, l, E and  represent the 

 

Change in diameter ( d) 

The circumferential strain c c and 

l as  c = 
E
c  -  

E
l     (9) 

Substituting c = 
t

dp

2
 and  l = 

t

dp

4
 in eq. (9), and simplifying   

c = 
2

1
2 Et

dP
                                     (10)  

Fig. 5 Normal stresses 
on the wall of thin 
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Since the circumference is directly proportional to the diameter, the strain in eq. (10) can be 

equated to diametral strain, ie,  
d

d
   

Thus,      c = 
d

d 
 

Therefore, change in diameter    d =  c .d            (11) 

where th c is given in eq. (10). 

Change in length ( l) 

l l and circumferential 

c as       l = 
E
l  -  

E
c     (12) 

c = 
t

dp

2
 l = 

t

dp

4
 in eq. (12), and simplifying   

                  l = 
2

1

2 Et

dp
                                 (13) 

Further              l = 
l

l 
 

Hence, change in length        l = l .l     (14) 

l is given in eq. (13). 

Change in volume ( V) 

 

Hence,                                           V = 
4

 d2 l 

Taking logarithms  log V = log 
4

 + 2 log d + log l 

Taking differentials   
V

V 
 = 2 

l

l

d

d   
     (15) 

Substituting  ,
 

v
V

V
  c
d

d 
  and   l

l

l 
 in eq. (15) 

              v = 2 c + l             (16) 

Substituting for c l from eqs. (10) and (13) in eq. (16) 
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                              v  = 2
2

5

2 Et

dp
                                         (17) 

Since,          
V

V 
v  

Change in volume                v .V                                                        ( 18) 

v is given in eq. (17). 

3.3.5 Efficiency of Joints 

Cylinders are normally made of number of sheets which are riveted or welded together. The 

joints between the sheets can be along the longitudinal direction and/or along the circumferential 

direction. The longitudinal and circumferential joints in a thin cylinder are shown in Fig. 6.  

 

 

 

 

 

 
Fig. 6 Longitudinal and circumferential joints in thin cylinder 

 

Joints are generally weaker than parent material.  The ratio of strength of joint to strength of 

l c respectively.  A longitudinal joint resists 

c  and circumferential joi l . 

 1 c, then the longitudinal joint becomes critical and hence the following expression 

governs the design 

c 1 = 
t

dp

2
      (19)  

where c is equated to the safe or permissible stress of the material. 

 1 c, then the circumferential joint becomes critical and hence the following 

expression governs the design 

l c = 
t

dp

4
      (20) 

where l is equated to the safe or permissible stress of the material.    

Parent  

material 

Longitudinal 

joint 
Circumferential 

joint 

Parent  

material 

no
tes

4f
ree

.in



 
Example 1 

What pressure may be allowed in a cylindrical boiler 2.5 m internal diameter with plates 20 mm 

thick, if the safe intensity of tensile stress is 65 MPa. 

Given :   mmtmmd 202500  

C l, the safe intensity of stress should be equate C 

Hence   C safe = 65 MPa 

We have   C = 
t

dp

2
   

Hence,            MPa
d

t
p c 04.1

2
 

Thus the safe allowable internal pressure in the cylinder is 1.04 MPa. 

Example 2 

Determine the minimum thickness of the plate required for boilers of internal diameter 1.5 m and 

internal pressure of 1 MPa if the efficiency of riveted joints is 60 %. The permissible stress in 

steel plate is 150 MPa. 

Given :     6.0Cl . 

This satisfies the condition Cl 2  

Hence the following expression (eq. 19) governs the design for the given data 

t

dp
lc

2
  where C safe = 150 MPa 

Hence,  mmx
dp

t
lc

33.8
1

2
 

Thus the minimum thickness of the plate is 8.33 mm 

Example 3 

A thin cylinder of internal diameter 1m and thickness 15 mm is made of number of sheets which 

are riveted together.  If the efficiency the longitudinal joint is 90% and that of the circumference 

joint is 40%, determine the safe allowable internal pressure.  Assume the allowable tensile stress 

as 50 MPa. 

Given :     4.09.0 Cl and . 

This satisfies the condition  Cl 2  
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Hence the following expression (eq. 20) governs the design for the given data  

t

dp
cc

4
  where l allowable = 150 MPa  

Hence,                    MPa
d

tf
p Cl 2.1

4
 

Thus the safe allowable internal pressure = 1.2 MPa. 

Example 4 

A thin cylindrical shell 1m in diameter and 3m long has a metal thickness of 10 mm.  It is 

subjected to an internal fluid pressure of 3 MPa. Determine the changes in length, diameter and 

volume.  Also find the maximum shear stress in the shell.  Assume ES = 210 GPa and  = 0.3. 

Given: d = 1000mm, l = 3000 mm, t = 10 mm, p = 3MPa, E = 210 GPa and  = 0.3 

a)  Change in length 

The longitudinal strain is given by (eq. 13) 

2

1

2 Et

dp
l  

Substituting the data          41043.1 xl  

Since     
l

l
l  

Change in length, mmll l 43.0  

b)  Change in diameter 

The circumferential strain (or diametral strain) is given by (eq. 10) 

2
1

2 Et

dp
C  

Substituting the data            4101.6 xC  

Since             
d

d
c  

Change in diameter, mmdd C 61.0  

c)  Change in volume 

The internal volume V of the cylinder is given by 

392 10356.2)(
4

mmxldxv  
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The volumetric strain is given by (eq. 16) 

lCv 2  

Substituting   4101.6 xC and 41043.1 xl  

Volumetric strain,   41063.13 xv  

Since     
v

v
v  

Change in volume,  3mm 3211493.09Vv v  

d)  Max Shear Stress 

The maximum shear stress is given by (eq. 8) 

MPa
t

dp
s 5.37

8
max  

3.4 THICK CYLINDER THEORY 

In thin cylinders, the average circumferential stress (or hoop stress) is nearly equal to the 

maximum circumferential stress and hence the distribution of this stress over the cylinder wall is 

considered to be uniform.  But in thick cylinders, the distribution of circumferential stress is 

considered to be non-uniform, as the average circumferential stress is much smaller than the 

maximum circumferential stress. Moreover, the variation of circumferential stress in thick 

cylinder is observed to be non-linear.  Further, the radial stress which is neglected in thin 

cylinders is accounted in thick cylinders since its magnitude is considerable. 

 

3.4.1 Assumptions 

The problem of determining the circumferential stress c and radial stress r at any point on a 

thick walled cylinder in terms of the applied pressures and dimensions was first solved by the 

French elastician, Gabriel Lame in 1833. The following assumptions were made during the 

analysis. 

1. The material is homogeneous, isotropic and elastic. 

2. The stresses are within the proportionality limit. 

3. The longitudinal strain remains constant for all fibres. 

4. The circumferential stress (or hoop stress) is considered to vary across the wall thickness.  It 

is maximum at the inner surface and minimum at the outer surface. 
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3.4.2 Expressions for Circumferential and Radial Stresses i

Equations] 

i o Fig. 7.  The thick cylinder 

is assumed to be composed of a number of thin shells as shown.   

 

 

 

 

 

 

 

 

 

Consider the free body diagram of the half-section of a typical thin shell, the radius of which is 

, as shown in Fig 7.  The circumferential stress in this shell is c.  The radial 

r and that on the oute r + d r d r  is the 

increment in r  due to the variation of pressure across the cylinder body.  The radial stresses are 

assumed (incorrectly) to be tensile, so r  r

be the   

Considering the free body diagram of the half section, and applying the equilibrium equation 

 + ve] 

( r r) [2 (r + dr)]  r (2r)  2 c (dr) = 0 

Ignoring very small terms, the above equation reduces to 

   r . r + r . dr + r . d r  r . r  c . dr = 0 

On rearranging,     r . 
dr

rd
 r  c  =0            (21) 

The element in the wall of a thick shell will be subjected to all the three stresses, namely, 

circumferential s c , longitudinal s l  and adial s r . U

triaxial state of stress l is given by  

Thin Shell  

po 

r r 

c 
r 

c 

dr 

r a 

pi 

b 

dr 

r 

r r 

  r 

c c 

dr                 2r                dr 

Free body diagram 
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   l = 
E
l  -  

E
c  -  

E
r  

or   l =  [ l -  ( c + r)] 

In case of thick cylinders, longitudinal strain l  is a constant and hence l is a constant.  

Further, E and   are also constants.  Hence it implies that ( c r) should also be a constant. 

Let                c r = 2 A   where A is a constant          (22) 

Adding eqs. (21) and (22) 

r . 
dr

d r + 2 r  = 2 A 

or     r . 
dr

d r = 2 (A  r) 

Separating the variables 

   
)( r

r

A

d
 = 2 . 

r

dr
 

On integrating 

    loge (A  r ) =  2 loge . r + C  where C is a constant 

   loge [(A  r ) . r2] =  C 

  loge [(A  r ) . r2] = loge
 B                                      (23)  

where    loge B =  C,  and B is another constant. 

From eq. (23)  (A  r)  r2 = B   

   
2r

B
Ar               (24) 

Substituting eq. (24) in eq. (22) 

   A
r

B
Ac 2

2
 

   
2r

B
Ac        (25) 

Note 1:  In equations (24) and (2
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c r

be determined. 

 

Note 2:  From equations (24) and (25), it can be observed that c is greater than r .  Further 

c

stress of the material is given it should be equated to circumferential stress at the internal surface. 

 

Note 3:  From equations (24) and (25), it can be seen that both c r depend on r2. Hence 

the variation of these stresses is non-linear. 

 

Example 5 

A thick cylindrical pipe of external diameter 300 mm and thickness 50 mm is subjected to an 

internal fluid pressure of 40 MPa and an external pressure of 2.5 MPa.  Calculate the maximum 

and minimum intensities of circumferential and radial stresses in the pipe section.  Sketch the 

variation of stresses across the pipe section. 

 

Given: Thickness t = 50 mm 

External diameter = 300 mm.   

Hence, external radius  b = 150 mm 

 Internal radius a = b  t = 100 mm 

 

2r

B
Ac                               (26) 

and 
2r

B
Ar                                                                 (27) 

 

Boundary condition 1:  

The cylinder is subjected to an internal pressure of 40 MPa. 

Hence @ r = 100 mm, r  =  40 MPa (Compressive) 

From (26)   40 = A  
2)100(

B
                                                  (28) 

150 mm 
100 
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Boundary condition 2:  

The cylinder is subjected to an external pressure of 2.5 MPa. 

 Hence @ r = 150 mm, r  =  2.5 MPa (Compressive) 

 From (26)   2.5 = A  
2)150(

B
                                                        (29) 

Solving eqs. (28) and (29);  A = 27.5      and      B = 675000 

Hence eqs. (26) and (27) take the form 

c = 27.5 + 
2

675000

r
                                                         (30) 

r = 27.5  
2

675000

r
                                                         (31) 

From eq. (30) the distribution of hoop stress can be determined. Hence 

@ r = 100 mm, c = 95 MPa (Tensile) 

@ r = 150 mm, c = 57.5 MPa (Tensile) 

From eq. (31) the distribution of radial stress can be determined. Hence 

@ r = 100 mm, r =  40 MPa (given) (Compressive) 

@ r = 150 mm, r =  2.5 MPa (given) (Compressive) 

 

Example 6 

A thick cylindrical pipe of internal radius 120 mm and external radius 

160 mm is subjected to an internal fluid pressure of 12 MPa.  

Determine the hoop stress in the cross section.  What is the percentage 

CIRCUMFERENTIAL STRESS 

(TENSION) 

40 MPa 95 MPa 

150 mm 

100 mm 

Thick 

cylinder 

5.2 MPa 5.75 MPa 

RADIAL STRESS 

(COMPRESSION) 

Variation of stresses across wall thickness 

160 mm 

120 mm 
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error if the maximum hoop stress is found from the equation of thin pipes?  

 

Given: Internal radius a = 120 mm, and External radius b = 160 mm 

 

2r

B
Ac               (32) 

and 
2r

B
Ar                                    (33) 

 

Boundary condition 1:  

The cylinder is subjected to an internal pressure of 12 MPa. 

Hence @ r = 120 mm, r =  12 MPa (Compressive) 

From (33)                    12 = A  
2)120(

B
                                                         (34) 

Boundary condition 2:  

The cylinder is not subjected to any external pressure. 

Hence @ r = 160 mm, r = 0 

From (33)             0 = A  
2)160(

B
                                                        (35) 

Solving eqs. (34) and (35);  A = 15.43     and     B = 394971.43 

Hence eqs. (32) and (33) take the form 

c = 15.43 + 
2

394971.43

r
                                                   (36) 

    r = 15.43  
2

394971.43

r
                                                  (37) 

From eq. (36) the distribution of hoop stress can be determined. Hence 

@ r = 120 mm, c = 42.86 MPa (Tensile) 

@ r = 160 mm, c = 30.86 MPa (Tensile) 

From eq. (37) the distribution of radial stress can be determined. Hence 

@ r = 120 mm, r = 12 MPa (given) (Compressive) 

@ r = 160 mm, r = 0 (given) (Compressive) 

T  
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c = 42.86 MPa 

Using thin cylinder theory, the circumferential stress is obtained as 

MPa
t

dp
c 0.36

)40(2

)240()12(

2
 

Therefore, percentage error = 100
86.42

00.3686.42
x  = 16 % 

 

Example 7 

A thick cylinder of internal diameter 200 mm is subjected to an internal fluid pressure of 40 

MPa.  If the allowable stress in tension for the material is 120 MPa find the thickness of the 

cylinder. 

Given: Internal diameter = 200 mm.  Hence, internal radius a = 100 mm 

 

2r

B
Ac                               (38) 

and 
2r

B
Ar                                                                 (39) 

 

Boundary condition 1:  

The cylinder is subjected to an internal pressure of 40 MPa. 

Hence @ r = 100 mm, r =  40 MPa (Compressive) 

From (39)                    40 = A  
2)100(

B
                                                 (40) 

Boundary condition 2:  

It is known that c is always more than r. Further c is maximum at inner surface. Hence equate 

the given allowable stress to c at inner surface. 

Hence @ r = 100 mm, c = 120 MPa  (tensile) 

From (38)        120 = A + 
2)100(

B
                                              (41) 

Solving eqs. (40) and (41); A = 40     and     B =  800000 

 

To find thickness, apply the third boundary condition.  
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Boundary condition 3:  

The cylinder is subjected to zero external pressure. 

Hence @ r = (100 + t) mm, r = 0  

From (39)              0 = 40  
2)100(

800000

t
                                              (42) 

From eq. (42), thickness of cylinder is 

t = 141.42 mm 
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BENDING MOMENT AND SHEAR FORCES 

INTRODUCTIO N 

Beam is a structural member which has negligible cross -section compared to its 

length. It carries load perpendicular to the axis in the plane of the beam. Due to the 

loading on the beam, the beam deforms and is called as deflection in the direction 

of loading. This deflection is due to bending moment and shear force generated as 

resistance to the bending. Bending Moment is defined as the internal resistance 

moment to counteract the external moment due to the loads and mathematically it is 

equal to algebraic sum of moments of the loads acting on one side of the section. It 

can also be defined as the unbalanced moment on the beam at that sect ion. 

Shear force is the internal resistance developed to counteract the shearing action 

due to external load and mathematically it is equal to algebraic sum of vertical 

loads on one side of the section and this act tangential to cross section. These two 

are shown in Fig 3.01 (a). 

/unit length 

Member after bending 

Span=

l 

x 
b 

h 

/unit length 

Member before 

bending 

Longitudinal section Cross-section 

V 

M 

x 

Unbalanced Moment = Bending Moment 

(M) & Unbalanced Force = Shear Force 

(V) Fig. 3.01 (a) 
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For shear force Left side Upward force to the section is Positive  (LUP) and Right 

side Upward force to the section is Negative (RUN) as shown in Fig. 3.01 (b).  

For Bending Moment, Moment producing sagging action to the beam or clockwise 

moment to the left of the section and anti-clockwise moment to the right of the 

section is treated as positive and Moment producing hogging action to the beam or 

anti-clockwise moment to the left of the section and clockwise moment to the right  

of the section is treated as Negative as shown in Fig. 3.01(b). 

Elastic Curve 

Generally the beam is represented by a line and the beam bends after the loading. The 

depiction of the bent portion of the beam is known as elastic curve. 

The shape of the elastic curve is the best way to find the sign of the Bending Moment as 

shown in the Fig. 3.02 

 

Support Reactions: 

The various structural members are connected to the surroundings by various types 

of supports .The structural members exert forces  on supports known as action. 

Similarly supports exert forces on structural members known as reaction.  

         A beam is a horizontal member, which is generally placed on supports.  

Sagging Hogging Hogging 

Overhang Overhang 

Elastic curve 

Fig. 3.02 Elastic Curve 

Bending Moment 

 

+ve 

 

+ve 

Sagging 

 

-ve 

Hogging 

Sign Convention 

 

+ve 

 

-ve 

Shear Force 

LUP-Leftside Upward 

Positive 

RUN-Rightside 

Upward Negative 

Fig. 3.01 (b) 
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The beam is subjected to the vertical forces known as action. Supports exe rt forces  

on beam known as reaction.  

Types  of supports : 

1) Simple supports 

2) Roller supports 

3) Hinged or pinned supports 

4) Fixed supports  

1) Simple  supports : 

                                                 

Fig. 3.03 

          Simple supports are those supports, which exert reactions perpendicular to 

the plane of support. It restricts the translation of body in one direction only, but 

not rotation.                                                               

2) Roller supports : 

           

Fig. 3.04 

Roller supports are the supports consisting of rollers which exert reactions 

perpendicular to the plane of the support. They restrict translation along one 

direction and no rotation.  

3) Hinged or Pinned supports :  

 

Fig. 3.05 

Hinged supports are the supports which exert reactions in any direction but 

for our convenient point of view it is resolved in to two components. Therefore 

hinged supports restrict translation in both directions. But rotation is possible.  

4) Fixed supports : 

Fixed supports are those supports which restricts both translation and rotation of 

the body. Fixed supports develop an internal moment known as restraint moment to 

prevent the rotation of the body.  
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Fig. 3.06 

Types  of Beams:- 

1) Simply supported Beam: 

 

Fig. 3.07 

It is a beam which consists of simple supports. Such a beam can resist forces 

normal to the axis of the beam. 

2) Continuous  Beam:  

 

Fig. 3.08 

It is a beam which consists of three or more supports.  

 

3) Cantilever beam: 

 

Fig. 3.09 

It is a beam whose one end is fixed and the other end is free. 

3) Propped cantilever Beam: 

It is a beam whose one end is fixed and other end is simply supported.  

 

Fig. 3.10 

4) Overhanging Beam: 

It is a beam whose one end is exceeded beyond the support.  

 

Fig.3.11 
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Types  of loads: 

1) Concentrated load: A load which is concentrated at a point in a beam is known 

as concentrated load. 

 

Fig. 3.12 

2) Uniformly Dis tributed load: A load which is distributed uniformly along the 

entire length of the beam is known as Uniformly Distributed Load.  

 

Fig. 3.13 

Convert the U.D.L. into point load which is acting at the centre of particular span 

Magnitude of point load=20KN/mx3m=60kN  

 

3) Uniformly Varying load: A load which varies with the length of the beam is 

known as Uniformly Varying load 

 

Fig. 3.14 

Magnitude of point load=Area of triangle and which is acting at the C.G. of 

triangle. 
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Problems on Equilibrium of coplanar non concurrent force  system.  

Tips  to find the  support reactions: 

1) In coplanar concurrent force system, three conditions of equilibrium can be 

applied namely  

   Fx  =0,  Fy =0 and ΣM=0 

2) Draw the free body diagram of the given beam by showing all the forces and 

reactions acting on the beam 

3) Apply the three conditions of equilibrium to calculate the unknown reactions at 

the supports. Determinate  s tructures  are those which can be solved with the 

fundamental equations of equilibrium. i.e. the 3 unknown reactions can be solved 

with the three equations of equilibrium. 

Relationship between Uniformly distributed load (udl), Shear force and Bending 

Moment. 

Consider a simply supported beam subjected to distributed load  which is a function of x 

as shown in Fig. 3.15(a). Consider section  at a distance x from left support and another 

section  at a small distance dx from section . The free body diagram of the element is 

as shown in Fig. 3.15(b). To the left of the section  the internal force V and the moment 

M acts in the +ve direction. To the right of the section  the internal force and the 

moment are assumed to increase by a small amount and are respectively V+dV and M+dM 

acting in the +ve direction. 

 

 

For the equilibrium of the system, the algebraic sum of all the vertical forces must be zero. 
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 

ve 0;

0

0

...(01)

V

V dx V dV

dx dV

dV

dx







  

   

  

 



 

Eq. 01 the udl at any section is given by the negative slope of shear force with respect to 

distance x or negative udl is given by the rate of change of shear force with respect to 

distance x. 

Within a limit of distributed force 1 and 2 over a distance of a, shear force is written as 

2

1

V dx



   

For the equilibrium of the system, the algebraic sum Moments of all the forces must be 

zero. Taking moment about section  

0;M   

 ( ) 0
2

dx
M Vdx dx M dM

 
     

 
 

Ignoring the higher order derivatives, we get 

0

or 02

Vdx dM

dM
V

dx

 


 

Eq. 02 shows the shear force at any section is given by rate of change in bending moment 

with respect to distance x. 

Within a limit of distributed force 1 and 2 and shear force V1 and V2 over a distance of 

a, we can write bending moment as 

2

1

V

V
M Vdx   
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Point of contra flexure  or point of inflection.  

These are the points where the sign of the bending moment changes, either from positive 

to negative or from negative to positive. The bending moment at these points will be zero. 

 

Procedure  to draw Shear Force  and Bending Moment Dia gram 

 Determine the reactions including reactive moments if any using the conditions of 

equilibrium viz. H = 0; V = 0; M = 0 

Shear Force  Diagram (SFD) 

 Draw a horizontal line to represent the beam equal to the length of the beam to some 

scale as zero shear line. 

 The shear line is vertical under vertical load, inclined under the portion of uniformly 

distributed load and parabolic under the portion of uniformly varying load. The shear 

line will be horizontal under no load portion. Remember that the shear force diagram is 

only concerned with vertical loads only and not with horizontal force or moments. 

 Start from the left extreme edge of the horizontal line (For a cantilever from the fixed 

end), draw the shear line as per the above described 

method. Continue until all the loads are completed and 

the check is that the shear line should terminate at the 

horizontal line. 

 The portion above the horizontal line is positive shear 

force and below the line is negative shear force. 

 To join the shear line under the portion of uniformly 

varying load, which is a parabola, it is to be 

remembered that the parabola should be tangential to the horizontal if the 

Fig. 3.17 Shear Force Diagram 

Loading Diagram 

Uniformly Varying Load 

 

  

Sagging Hogging Hogging 

Overhang Overhang 

Points of Contra flexure 

x ' x ' 

Fig. 3.16 Bending Moment Diagram 
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corresponding load at the loading diagram is lesser and will be tangential to vertical if 

the corresponding load at the loading diagram is greater. 

 

Bending Moment Diagram (BMD) 

 Draw a horizontal line to represent the beam equal to the length of zero shear line 

under the SFD. 

 The Bending Moment line is vertical under the applied moment, inclined or horizontal 

under the no load portion, parabolic under the portion of uniformly distributed load 

and cubic parabola under the portion of uniformly varying load.  

 Compute the Bending Moment values as per the procedure at the salient points. 

 Bending Moment should be computed just to the left and just to the right under section 

where applied moment is acting. i.e. MAL and MAR. Once the applied moment is to be 

ignored and next the moment is to be considered as per the sign convention. 

 Draw these values as vertical ordinates above or below the horizontal line 

corresponding to positive or negative values. 

 

 

 

/unit 
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Fig. 3.18 SFD, BMD and Loading Diagrams 
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 Start the Bending Moment line from the left extreme edge of the horizontal line, draw 

as per the above described method under prescribed loading conditions. Continue until 

the end of the beam and the check is that the line should terminate at the horizontal 

line. 

 The portion above the horizontal line is positive Bending Moment and below the line 

is negative Bending Moment. 

 Locate the point of Maximum Bending Moment. It occurs at the section where Shear 

Force is zero. 

 Locate the Point of Contra flexure where the Bending Moment line crosses the 

horizontal line. i.e. the sign of Bending Moment line changes its sign. 

To join the Bending Moment line under the portion of uniformly distributed load which is 

a parabola, it is to be remembered that the parabola should be tangential to the horizontal 

if the corresponding shear force value at the loading diagram is lesser and will be 

tangential to vertical if the corresponding shear force line at the shear force diagram is 

greater as shown in Fig. 3.17. 

In case of the beam being a Cantilever, start the Shear force from the fixed end. i.e. 

arrange the cantilever such that the fixed end is towards left end. 

  

/unit 

Loading Diagram 

SFD 

BMD 

Fig. 3.19 Cantilever 
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Problems  

S TANDARD PROBLEMS  

Eccentric Concentrated Load 

Consider a simply supported beam of span l with 

an eccentric point load W acting at a distance a 

from support as shown in Fig. 3.20 

The reactions can be obtained from the equations 

of equilibrium 

(Write the Upward acting forces on one side and 

downward acting forces on the other side of the 

equation to avoid confusion among sign 

convention). 

VA = 0; RA + RB = W (01) 

Taking moments about A, 

MA = 0; 

(Write the clockwise moments on one side and anti-clockwise moments on the other side 

of the equation to avoid confusion among sign convention). 

(RB)(l) = (W)(a) 

B

Wa
R

l
  

Similarly Taking moments about B, 

MB = 0; 

(RA)(l) = (W)(l—a) 

 
A

W l a
R

l


  

Check 

To check the computations, substitute in Eq. 01, we have 

 
A B

W l aWa a l a
R R W W

l l l

   
     

 
and hence OK. 

Shear Force Values 

VA = 0 +
 

A

W l a
R

l


  

VC = 
 W l a

l


 

W 

a 

l 

A B 

RA RB 

C 

RA 

RB 

W 

SFD 

BM

D 

 
a

W l a
l



Fig. 3.20 SS with Point load 

no
tes

4f
ree

.in



 
 

 
 

l 

A B 

RA RB 

C 

RA 

RB 

 

SFD 

BM

D 

2

8

l

Fig. 3.21 SS with UDL 

/unit 

length 

VC = 
 W l a Wa

W
l l


    

VB = 
Wa

l
  

VB = 0
Wa Wa

l l
    

Bending Moment Values 

Note: The Bending Moment will always will be zero at the end of the beam unless there is 

an applied moment at the end. 

MA = 0 

MB = 0 

MC =  
 

 A

W l a a
R a a W l a

l l


     also 

MC =       
Wa a

RB l a l a W l a
l l

 
      

 
 

Uniformly Distributed Load 

Consider a simply supported beam of span l with 

an uniformly distributed load /m acting over the 

entire span as shown in Fig. 3.35 

The reactions can be obtained from the conditions 

of equilibrium. 

As the loading is symmetrical  

RA = RB and hence 

V A =0 ;RA + RB =2 RA =2 RB  = xl  (01) 

2
A B

l
R R


   

Shear Force Values 

VA = 
2

A

l
R


  

2 2
B

l
V l

 
     

Shear Force at Midsection will be 

0
2 2

C

l l
V

 
    

Bending Moment Values 

MA = 0 
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l 

A B 

RA  

C 

RA 

RB 

 

SFD 

BMD 

2

9 3

l 
 
  

Fig. 3.22 SS with UVL 

/unit 

length 

x 

x 

MB = 0 

MC =  
2

2 2 2 4
A

l l l l
R

    
     
   

 

 

Uniformly Varying Load 

Consider a simply supported beam of span l with an uniformly varying load /m acting 

over the entire span as shown in Fig. 3.24 

 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; 

2
A B

l
R R

 
   

 
           (01) 

Taking moments about A, 

MA = 0; 

2

2 3 6

6

B

B

l l l
R l

l
R

 



  
    

  



 

Taking moments about B, 

MB = 0; 

22

2 3 3

3

A

A

l l l
R l

l
R

 



  
    

  



 

Check 

To check the computations, substitute in Eq. 01, we have 

6 3 2
A B

l l l
R R

     
      

   
 

Hence O.K. 

Shear Force Values 

VA = 
3

A

l
R


  

3 2 6
B

l l l
V

  
     and 0

6 6
B

l l
V

 
     

Location of Zero Shear Force 

Consider a section at a distance x from left support and load intensity at that 
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4f
ree
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section x is given by x

x

l
 

 
  
 

 

and Shear Force at that section is given by 

21
0 or 

2 2 6 3
x x B

x l l
V x R x

l

 


   
             

 

Bending Moment Values 

MA = 0 

MB = 0 

Bending Moment will be maximum at Zero Shear Force and  

 
3

3

2 2

1

2 3 6 6

6 63 3

1
1

36 3 9 3

c B x

x l x
M R x x x

l

l l l

l

l l

 


 

 

      
            

        

     
        
      

    
      

       

 

Cantilever with Point Load 

The reactions can be obtained from the conditions of 

equilibrium. 

VA = 0; 
AR W  

Taking moments about A, 

 AM W l a    

Shear Force Values 

VB = 0 

VC = 0 

VC = 0 W = W 

VA = W 

VA = W + W = 0 

Bending Moment Values 

MB = 0  

MC = 0 

 AM W l a    

Cantilever with Uniformly Distributed Load (UDL) 

The reactions can be obtained from the conditions of equilibrium. 
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VA = 0; 
AR l   

Taking moments about A, 

2

2 2
A

l l
M l




 
     

 
 

Shear Force Values 

VB = 0 

VA = —l 

VA = — l + l = 0 

Bending Moment Values 

MB = 0 

2

2 2
A

l l
M l




 
     

 
 

Cantilever with Uniformly Varying Load (UVL) 

Case (i) 

The reactions can be obtained from the conditions 

of equilibrium. 

VA = 0; 
2

A

l
R


   

Taking moments about A, 

2

2 3 6
A

l l l
M

    
       

   
 

Shear Force Values 

VB = 0 

2
A

l
V


  

0
2 2

A

l l
V

 
    

Bending Moment Values 

MB = 0 

2

2 3 6
A

l l l
M

    
       

   
 

Consider a section at a distance x from free end and load intensity at that section x is 

given by 

x

x

l
 

 
  
 

 

VA 

l 

SFD 

Fig. 3.34 Cantilever with UDL 

BMD 

2

2

l

l 
MA 

A B  /m 

/m 

VA 

SFD 

Fig. 3.35 Cantilever with UVL 

BMD 

2
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l
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MA 
A B 
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Shear Force at that section is given by 

21

2 2
x x

x
V x

l




 
     

 

 

Bending Moment at that section is given by 

31

2 3 6
x x

x x
M x

l




    
              

 

Case (ii) 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; 
2

A

l
R


   

Taking moments about A, 

22

2 3 3
A

l l l
M

    
     
   

 

Shear Force Values 

VB = 0 

2
A

l
V


  

0
2 2

A

l l
V

 
    

Bending Moment Values 

MB = 0 

22

2 3 3
A

l l l
M

    
     
   

 

Consider a section at a distance x from free end and load intensity at that section x is 

given by 

x

x

l
 

 
  
 

 

Shear Force at that section is given by 

21

2 2 2
x A x

l x
V R x

l

 


  
            

 

Bending Moment at that section is given by 

3 21

2 3 2 6 3
x A x A

x l x l
M R x x M x

l

  


        
                           

 

Cantilever with Partial Uniformly Distributed Load (UDL) 

The reactions can be obtained from the conditions of equilibrium. 

SFD 

Fig. 3.36 Cantilever with UVL 

BMD 

2
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l

2

l

/m 

VA 
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MA 
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VA = 0; 
AR b  Taking moments about A, 

2
A

b
M b a

 
    

 
 

Shear Force Values 

VB = 0 

VD = 0 

VC = — b 

VA = — b 

VA = — b + b = 0 

Bending Moment Values 

MB = 0 

MD = 0 

2

2 2
C

b b
M b




 
     

 
 

2
A

b
M b a

 
    

 
 

3.01. Draw the Shear Force and Bending Moment Diagram for a Cantilever beam 

subjected to concentrated loads as shown in Fig. 3.38. 

From the conditions of equilibrium 

V = 0; RA = 10 + 20 + 30 = 60 kN () 

M = 10 x 6 + 20 x 3 + 30 x 2 = 180 kN-m. 

Shear Force Values at Salient Points 

VD = 0 – 10 = -10 kN 

VC = -10 – 20 = -30 kN 

VB = -30 – 30 = -60 kN 

VA = -60 + 60 = 0kN 

Bending Moment Values at Salient Points 

MD = 0 kN-m 

MC = -10 x 3 = -30 kN-m 

MB = -10 x 4 – 20 x 1 = - 60 kN-m 

MA = -10 x 6 – 20 x 3 – 30 x 2 = - 180 kN-m 

Fig. 3.37 Cantilever with Partial 

UDL 

l 

MA A B 
 /m 

b a 
D C 

SFD 

BMD 

2

2

l
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3.02. A cantilever beam is subjected to loads as shown in Fig. 3.39. Draw SFD and BMD. 

From the conditions of equilibrium 

VA = 0; RA = 10 + 30 + 20 x 5 = 140 kN () 

MA = 30 x 2 + 10 x 3 + (20 x 5)
5

2

 
 
 

 + 40 = 380 kN-m. 

Shear Force Values at Salient Points 

VD = 0 kN 

VC = 0 – 20 x 2 = –40 kN 

VC = –40 – 10 = –50 kN 

VB = –50 – 20 x 1 = –70 kN 

VB = –70 – 30 = –100 kN 

VA = –100 – 20 x 2 = –140 kN 

VA = –140 + 140 = 0kN 

Bending Moment Values at Salient Points 

As there is applied moment at section D, there will be two moments at that section and 

hence 

MDR = 0 

MDL = 0 – 40 = –40kN-m 

Fig.3.38 Cantilever 

SFD 



-10kN 

-30kN 

-60kN 

Loading Diagram 

10kN 20kN 30kN 

3m 2m 
1m 

A B C D 

RA 

MA 

BMD 

0kNm 
-30kN-m 

-60kN-m 

-180kN-m 
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MC = –20 x 2 x 1 – 40 = –80 kN-m 

MB = –20 x 3 x 1.5 – 10 x 1 – 40 = – 140 kN-m 

MA = –20 x 5 x 2.5 – 10 x 3 – 20 x 2– 40 = – 360 kN-m 

 

140kN 

100kN 

70kN 
50kNm 

40kN 

20kN/m 

2m 1m 2m 
A B C D 

MA 

VA 

30kN 10kN 

40kNm 

Loading Diagram 

Bending Moment Diagram 

Shear Force Diagram 

Fig. 3.39 BMD & SFD - Cantilever 

-40kNm 
-80kNm 

-140kNm 

-360kNm 
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3.03. Draw BMD and SFD for the cantilever beam shown in Fig. 3.40.  

Locate the point of contra flexure if any, 

From the conditions of equilibrium 

VA = 0; RA = 30 + 
1

2

 
 
 

 x 20 x 2 = 50 kN () 

MA = 30 x 2 +  
1

2

 
 
 

 (20 x 2)
2

3
3

 
 

 
 – 100 = 33.33 kN-m. 

Shear Force Values at Salient Points 

VD = 0 kN 

VC = 0 – 
1

2

 
 
 

 (20 x 2) = –20 kN 

VB =–20 kN 

100kN

2m 1m 2m 
A B C D 

MA 

VA 

30kN 

Loading Diagram 

20kN/m 

50kN 

20kN 

Shear Force Diagram 

20kN 

Bending Moment Diagram 

Fig. 3.40 BMD & SFD - Cantilever 

-33.33kNm -33.33kNm 

-13.33kNm 

63.33kNm 
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VB = –20 – 30 = –50 kN 

VA = –50 kN 

VA = –50 + 50 = 0kN 

Bending Moment Values at Salient Points 

As there is applied moment at section B, there will be two moments at that section and 

hence 

MD = 0 kN 

MC = –
1

2

 
 
 

 (20 x 2)
2

3

 
 
 

 = –13.33 kN-m 

MBR = –
1

2

 
 
 

 (20 x 2)
2

1
3

 
 

 
 = –33.33 kN-m 

MBL = –33.33 + 100 = + 66.67kN-m 

MA = –
1

2

 
 
 

 (20 x 2)
2

3
3

 
 

 
 – 30 x 2 + 100 = –33.33 kN-m 

Points of contraflexure:  

 2
 or 0.67m

33.33 66.67

xx
x


   

It lies at 0.67m and 2m right of the left support. 

Bracket Connections 

There can be following types of bracket connections which can be converted to load 

and moment. 

The types of brackets are vertical and L bracket as shown in Fig. 3.41. Apply two 

equal, opposite and collinear forces at the joint where the load gets transferred to the 

beam. The two forces (F) acting equal and opposite separated by a distance will form a 

couple equal to the product of Force and the distance between the forces along with the 

remaining Force. 

  

a 
F F 

F F 

a Fxa 
F 

beam 

bracket 

Fig.3.41 Bracket Connections 

a 

F F 

F 

F 
a 

Fxa 
F 

beam 

L-bracket 
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3.04. An overhanging beam ABC is loaded as shown in Fig. 3.42. Draw the shear 

force and bending moment diagrams. Also locate point of contraflexure. 

Determine maximum +ve and —ve bending moments. (Jan-06) 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; 2 6 2 14kNA BR R       

Taking moments about A, 

 
6 48

0; 4 2 6 2 6 or 12kN
2 4

A B BM R R
 

        
 

 

Similarly taking moments about B, 

   
2 4 8

0; 4 2 2 2 2 2 4  or 2kN
2 2 4

B B AM R R
   

            
   

 

Check 

Substituting in Eq. 01, we have RA + RB = 2 + 12 =14 kN (O.K.) 

Zero Shear Force 

Consider a section at a distance x where Shear Force is zero as shown in Fig.3,42, 

From similar triangles, we have 

 
2 6

4

1m

x x

x






  

Bending Moment Values 

MA = 0 

2
2 2 2 2 8kN

2
BM

 
        

 
 (Negative because Sagging) 

MC = 0 

Bending Moment at zero Shear Force will be either Maximum or Minimum. 

2
22

2 2 1kNm
2

x

x
M x x x


      

Maximum positive BM is 1kNm at 1 m to right of left support and negative BM is 

8kNm at right support. 

Point of Contraflexure: Bending Moment equation at section y is 

2
22

2 2 0 or 2m
2

y

y
M y y y y


       
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3.05. Draw the Shear Force and Bending Moment Diagram for the loaded beam shown in 

Fig. 3.43. Find the Maximum bending moment. 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; 40 4 160kNA BR R     (01) 

Taking moment about A, 

 
4 480

0;8 40 4 1  or 60kN
2 8

A B BM R R
 

       
 

 

 

2 kN 
2 kN/m 

A B C 

4m 2m 2 kN 
2 kN/m 

A B C 

4m 2m 
RB RA 

Loading Diagram 

SFD 

2 kN 

—

6kN 

6 kN 

2 kN Zero Shear Force 

x 

1kNm 

—

8kNm 

BFD 

Fig. 3.42 
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The reactions can be obtained from the conditions of equilibrium. 

VA = 0; 40 4 160kNA BR R     (01) 

Taking moment about A, 

 
4 480

0;8 40 4 1  or 60kN
2 8

A B BM R R
 

       
 

 

Similarly taking moment about B, 

 
4 800

0; 8 40 4 3  or 100kN
2 8

B A AM R R
 

       
 

 

Check 

Substituting in Eq. 01, we have RA + RB = 100 + 60 =160 kN (O.K.) 

Zero Shear Force 

Consider a section at a distance x where Shear Force is zero as shown in Fig. 3.43 

From similar triangles, we have 

 
100 60

 or 2.5m
4

x
x x

 


 

Vo = 1 + 2.5 = 3.5m from right support. 

A C D B 

4m 3m 
1m 

40kN/m 

RA RB 
x 

100kN 

—60kN —60kN 

SFD 

225kNm 

180kNm 100kNm 

BMD Fig. 3.43 
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Bending Moment Values 

MB = 0 

60 3 180kNDM     

 
4

60 7 40 4 100kN
2

CM
 

     
 

  

MA = 0 

Bending Moment at zero Shear Force will be either Maximum or Minimum. 

   
2

240
100 1 100 1 20 225kNm

2
x

x
M x x x


           

3.06. Draw the Shear Force and Bending Moment Diagram for the loaded beam shown in 

Fig. 3.44. Also locate the Point of Contraflexure. Find and locate the Maximum +ve 

and —ve Bending Moments. 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; 40 20 60kNC DR R     (01) 

Taking moment about C, 

40
0;4 2 40 20 6 or 10kN

4
C D DM R R         

Similarly taking moments about D, 

200
0; 4 20 2 40 6 or 50kN

4
D C CM R R         

Check 

Substituting in Eq. 01, we have RC + RD = 50 + 10 = 60 kN (O.K.) 

Zero Shear Force is at right support 

Bending Moment Values 

MB = 0 

20 2 40kN-mDM       

40 2 80kNmCM        

MA = 0 

Maximum Moments: Maximum negative BM is 80 kNm at the left support. 
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3.07. Draw BMD and SFD for the loaded beam shown in Fig. 3.45. Also locate the Point 

of contraflexure and Maximum +ve and —ve Bending Moment 

The reactions can be obtained from the conditions of equilibrium. 

Taking moment about A, 

VA = 0; 3 5 2 6 20kNA BR R       (01) 

 
6 70

0;6 3 2 2 6 5 8 or 11.67kN
2 6

A B BM R R
 

          
 

 

Similarly taking moment about B, 

 
6 50

0; 6 5 2 2 6 3 8 or 8.33kN
2 6

B A AM R R
 

          
 

 

Check: Substituting in Eq. 01, we have RA + RB = 11.67 + 8.33 =20 kN (O.K.) 

 

40kN 20kN 

A C D B 
2m 4m 2m 

—40kN 

10kN 

20kN 

—40kN 

20kN 

SFD 

—

40kNm 

—

80kNm 
BM

Fig. 3.44 
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Check: Substituting in Eq. 01, we have RA + RB = 11.67 + 8.33 =20 kN (O.K.) 

Zero Shear Force 

Consider a section at a distance x where Shear Force is zero as shown in Fig. 3.45. 

From similar triangles, we have 

 
5.33 6.67

 or 2.67m
6

x
x x

 


 

Bending Moment Values 

MD = 0 

5 2 10kNBM       

3 2 6kNAM        

MC = 0 

Bending Moment at zero Shear Force will be either Maximum or Minimum. 

   
2 22 2

8.33 3 2 8.33 3 2 1.11kNm
2 2

x

x x
M x x x x

 
            

3kN 5kN 

C A B D 
2m 6m 2m 

2kN/m 

—3kN 

5.33kN 

20kN 

5kN 

SFD 

—3kN 

—

5kN 

—

10kNm 

—6kNm 

BM

Fig. 3.45 

—

1.11kNm 

y 
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Points of Contraflexure: 

Bending moment at section y from the left support is given by 

 
2

22
8.33 3 2  or 5.33 6 0 and 1.61m and 3.72m

2
y

y
M y y y y y          

Hence the points at 1.61m and 3.72m to right of left support. 

3.08. Draw the BMD and SFD for the loaded beam shown in Fig. 3.46.  

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; 20kNA BR R   

Taking moment about A, 

0;3 20 4 10

90
30kN

3

A B

B

M R

R

    

 
 

Similarly taking moments about B, 

 0; 3 10 20 1 0

30
10kN

3

B A

A

M R

R

    

   
 

Check 

Substituting in Eq. 01, we have RA + RB = —10 + 30 = 20 kN (O.K.) 

Bending Moment Values 

MD = 0 

20 1 20kNmBM       (Negative because Sagging) 

20 2 30 1 10kNm
RCM         

10 10 20kNm
LCM       or (By considering right side forces) 

10 2 20kNm
LCM      (By considering left side forces) 

MA = 0 
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An overhang beam ABC is loaded as shown in Fig. 3.47. Draw BMD and SFD. 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; 4 3 12 24kNA BR R       

Taking moment about A, 

 
3 162

0;6 12 9 4 3 3  or 27kN
2 6

A B BM R R
 

         
 

 

Similarly taking moments about B, 

 
3 18

0; 6 12 3 4 3  or 3kN
2 6

B A AM R R
 

         
 

 

Check 

Substituting in Eq. 01, we have RA + RB = —3 + 27 = 24 kN (O.K.) 

Bending Moment Values 

MD = 0 

12 3 36kNmBM       (Negative because Sagging) 

3 3 6kNmCM       

0AM   

20kN 

2m 1m 1m 

A B D C 10kNm 

—10kN —10kN 

20kN 20kN 

SFD 

BM

Fig. 3.46 

—20kNm 
—20kNm 

—10kNm 
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3.09. Draw SFD and BMD for the beam shown in Fig. 3.48. Determine the 

maximum BM and its location. Locate the points of contraflexure. (July 02)   

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; 20 3 40 100kNA BR R       

Taking moment about A, 

 
3 330

0;6 20 3 40 3 120 or 55kN
2 6

A B BM R R
 

         
 

 

Similarly taking moments about B, 

 
3 270

0; 6 40 3 20 3 3 120 or 45kN
2 6

B A AM R R
 

         
 

 

Check 

Substituting in Eq. 01, we have RA + RB =45 + 55 = 100 kN (O.K.) 

40kN 
20kN/m 120kNm 

3m 1.5m 1.5m 
A C D B 

45kN 

-15kN 

-55kN -55kN 

Fig. 3.48 

SFD 

BMD 

45kNm 

-37.5kNm 

82.5kNm 

x 
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Bending Moment Values  

MB = 0 

55 1.5 82.5kNm
RDM      

82.5 120 37.5kNm
LDM      (By considering right side forces) 

 
3

45 4.5 20 3 1.5 40 1.5 37.5kNm
2LDM

 
         

 
 (By left side forces) 

55 3 120 45kNmCM      (By considering right side forces) 

 
3

45 3 20 3 45kNm
2

CM
 

     
 

 (By left side forces) 

MA = 0 

Points of Contraflexure 

Consider a section at a distance x where BM is changing its sign as shown in Fig. 

3.49. From similar triangles, we have 

 
45 37.5

1.5

0.818m

x x

x






 

The Points of contraflexure are located at 3.818m and 4.5m from the left support. 

 

3.10. A beam ABCDE is 12m long simply supported at points B and D. Spans 

AB=DE=2m is overhanging. BC=CD=4m. The beam supports a udl of 10kN/m over 

AB and 20kN/m over CD. In addition it also supports concentrated load of 10kN at 

E and a clockwise moment of 16kNm at point C. Sketch BMD and SFD. (Aug 05) 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; 10 2 20 4 10 110kNB DR R        (01) 

Taking moment about B, 

   
2 4 576

0;8 10 2 10 10 20 4 4 16 or 72kN
2 2 8

B D DM R R
   

              
   

 

Similarly taking moment about D, 

   
2 4 304

0; 8 10 2 16 10 2 8 20 4  or 38kN
2 2 8

D B BM R R
   

              
   

 

Check 

Substituting in Eq. 01, we have RB + RD = 38 + 72 =110 kN (O.K.) 

Zero Shear Force 
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Consider a section at a distance x where Shear Force is zero as shown in Fig. 3.50. 

From similar triangles, we have 

 
12 68

 or 0.6m
4

x
x x
 


 

Bending Moment Values 

ME = 0 

10 2 20kNDM       

 
4

72 4 10 6 20 4 68kNm
2RCM

 
       

 
 

68 16 52kNm
LCM     (From right side forces) 

 
2

38 4 10 2 4 52kNm
2LCM

 
      

 
 (From left side forces) 

 
2

10 2 20kNm
2

BM
 

     
 

 

MA = 0 

Bending Moment at zero Shear Force will be either Maximum or Minimum. 

20kN/m 10kN/m 

16kNm 

4m 4m 
2m 2m 

A B C D E 

—20kN 

12kN 12kN 
10kN 10kN 

—68kN 

 

52kN

—

68kN

—

75.2kN

BM

SFD 

Fig. 3.49 

y z 

10kN 
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   
 

     

2

2

20 4
72 4 10 2 4

2

72 4 0.6 10 2 4 0.6 10 4 0.6 75.2kNm

x

x
M x x

 
      

        

 

Point of Contraflexures 

Consider a section at a distance z where Bending Moment is zero as shown in Fig. 

3.49. From similar triangles, we have 

 
20 52

 and 1.1m
4

z
z z
 


 

Bending Moment at Section y from point D is zero and can be written as 

 

 

2

2 2

20
72 10 2 0

2

72 10 2 10 62 10 20 0 and 0.341m

y

y
M y y

y y y y y y


     

          

 

3.11. Draw the Shear Force and Bending Moment Diagrams for the beam shown in Fig. 

3.50. Locate the point of contraflexure if any. (Feb 04) 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0;    10 5 80 80 16 2.5 250kNA DR R          

Taking moment about A, 

   
5 2.5

0;12.5 10 5 80 5 80 7.5 16 2.5 12.5
2 2

1675
134kN

12.5

A D

D

M R

R

   
             

   

 

 

Similarly taking moments about B, 

   
2.5 5

0;12.5 16 2.5 10 5 7.5 80 7.5 80 5
2 2

1450
116kN

12.5

D A

A

M R

R

   
              

   

 

 

Check 

Substituting in Eq. 01, we have RA + RB = 116 + 134 = 250 kN (O.K.) 

Bending Moment Values 

ME = 0 

 
2.5

16 2.5 50kNm
2

DM
 

     
 

 

 
2.5

134 5 16 2.5 5 425kNm
2

CM
 

      
 

 

 
5

116 5 10 5 455kNm
2

BM
 

     
   

MA = 0 
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Point of Contraflexure 

Consider a section at a distance y from the right support where Bending Moment is 

zero as shown in Fig. From similar triangles, we have 

 
50 425

 and 0.526m
5

z
y y
 


 

 

A B C 6

 

3m 8m 2m 

40kN —6.5 

90k

70kN 

20k 20k

x 

SFD 

40kN 

90-(-40)=130kN 

20kN 
 

20-(-70)=90kN 

A B C D 

Load intensity diagram 

264.75kNm 

—120 kNm 

—40 kNm BMD 

Fig. 3.50 
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3.12. From the given shear force diagram shown in the Fig. 3.50, develop the load 

intensity diagram and draw the corresponding bending moment diagram indicating 

the salient features. (Jan 08) 

The vertical lines in Shear force diagram represent vertical load, horizontal lines 

indicate generally no load portion, inclined line represents udl and parabola indicates 

uniformly varying load. 

To generate load intensity diagram, the computations are shown in Fig. 3.50. The 

vertical line from the horizontal line below the line indicates negative value and vice 

versa. To check whether the applied moments are there in the loading diagram, we 

can take algebraic sum of moments of all the loads about any point and if there is a 

residue from the equation it indicates the applied moment in the opposite rotation to 

be applied anywhere on the beam. 

Check 

Taking Moments about B, we have 

 
8

0; 40 3 90 8 20 10 20 8 0
2

BM
 

          
 

 

Note: Hence there is no applied moment or couple and if there is any residue from 

the equation like +M kNm then there is an applied moment of M kNm clockwise and 

vice versa. 

Bending Moment Values 

MD = 0 

MC = -20 x 2 = -40 kNm (Negative due to hogging moment) 

MB = -40 x 3 = -120 kNm (Negative due to hogging moment) 

MA = 0 

Maximum Bending Moment occurs at zero shear force which is located at a distance 

x from the left support as shown in Fig. From similar triangles, we have 

 
90 70

 or 4.5m
8

x
x x
 


 

Maximum Bending Moment at the section x is 

   

 

2
2

2

20
130 40 3 130 40 3

2

130 4.5 40 3 4.5 4.5 264.75kNm

x

x
M x x x x x         

      
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3.13. A beam 6m long rests on two supports with equal overhangs on either side and 

carries a uniformly distributed load of 30kN/m over the entire length of the beam as 

shown in Fig. 3.51. Calculate the overhangs if the maximum positive and negative 

bending moments are to be same. Draw the SFD and BMD and locate the salient 

points. (Jan 07) 

The reactions can be obtained from the conditions of equilibrium. 

As the loading is symmetrical RA = RB and hence 

VA = 0; RB + RC = 2 RB = 2RC = 30 x (6+2a) 

30 6
90kN

2
B CR R


    

Bending Moment at any section x from the left end is given by 

   
2

230
90  or 90 15

2
x

x
M x a x a x      01 

From the given problem, maximum positive and negative bending moments are to 

be same, which occurs at zero shear force sections. From the above loading diagram, 

it can be seen that the zero shear force occurs at support and at centre (as the loading 

6m 
a a 

A B C D 
30kN/m 

-63.64kN 

90k

-90kN 

63.64kN 

SFD 

23.176kNm 

BMD 

Fig. 3.51 

-23.176kNm -23.176kNm 

no
tes

4f
ree

.in



 
 

 
 

is symmetrical). Hence substituting x = a and 3, we get maximum +ve and —ve 

Bending Moment. 

215BM a   

     
2

90 3 15 3 90 3 135EM a a       

Equating the absolute values of above two equations, we have  

 2 215 90 3 135 or 6 9 0 and 1.243ma a a a a        

Bending Moment Values 

MD = 0 

230 1.243
23.176kNm

2
CM


     

230 1.243
23.176kNm

2
BM


     

MA = 0 

 
230 1.243

90 3 1.243 23.176kNm
2

EM


     

Points of Contraflexure: 

   2 290 1.243 15 6 1.243 0 or 1.76m and 4.24mxM x x x x x         

The points of contraflexure are at 1.76m and 4.24m from left end. 

3.14. Draw the Shear Force and Bending Moment Diagram for a simply supported beam 

subjected to uniformly varying load shown in Fig. 3.52. 

The trapezoidal load can be split into udl and uvl (triangular load) as shown in Fig. 

3.43. 

VA = 0;    
1

15 6 10 6 120kN
2

A BR R
 

      
 

 01 

Taking moment about A, 

   
6 1 2 390

0;6 15 6 10 6 6  or 65kN
2 2 3 6

A B DM R R
     

             
     

 

Similarly taking moments about B, 

   
6 1 6 330

0;6 15 6 10 6 80 7.5 80 5 or 55kN
2 2 3 6

B A AM R R
     

                
       

Check 

Substituting in Eq. 01, we have RA + RB = 55 + 65 = 120 kN (O.K.) 
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Shear Force Equation at any section x from left support 

Consider a section x at a distance x from the left support as shown. 

The intensity of uvl at x is given by 

10
1.67

6
x

x
x

 
  
 

kN/m 

2
21.67 5

55 15 55 15
2 6

x

x
V x x x      kN 

At x = 2m, 2
2

5
55 15 2 2 21.67kN

6
V        

At x = 3m, 2
3

5
55 15 3 3 2.5kN

6
V        

At x = 5m, 2
5

5
55 15 5 5 40.83kN

6
V         

Zero Shear Force = 25
55 15 0solving we get, 3.124m

6
oV x x x        

  

6m 

15kN/m 25kN/m 
A B 

6m 

15kN/m 15kN/m 

10kN/m 

udl 

uvl 

A B 

6m 

(udl)15kN/
(uvl)10kN/

 
A B 

2m 3m 
x 



45kN 

-55kN SFD 

BM

90.156kN

Fig. 

3.52 
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Bending Moment Values 

Bending Moment Equation at any section x from left support 

Consider a section x at a distance x from the left support as shown. 

2 2
2 315 1.67 5

55 55 7.5
2 2 3 18

x

x x x
M x x x x

  
          

kNm 

2 35
55 7.5

18
xM x x    

MB = 0 

MA = 0 

Maximum Bending Moment occurs at SF = 0, i.e. x = 3.124m 

2 35
55 3.124 7.5 3.124 3.124 90.156kNm

18
xM

 
       

 
 

3.15. A beam ABCD 20m long is loaded as shown in Fig. 3.53. The beam is supported at 

B and C with a overhang of 2m to the left of B and a overhang of am to the right of 

support C. Determine the value of a if the midpoint of the beam is point of inflexion 

and for this alignment plot BM and SF diagrams indicating the important values. 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; 5 20 25 kNB CR R         (01) 

Taking moment about B, 

   
 

 
 

22 20 22
0; 18 5 2

2 2

150
18 150  or 

18

B C

C C

M a R

a R R
a







    
              

  


 

Similarly taking moment about C, 

    
 

 
 
 

22 20
0; 18 5 20

2 2

300 25
18 300 25  or 

18

C B

B B

aa
M a R a

a
a R a R

a





 

    
              


   



 

Check 

Substituting in Eq. 01, we have  

 

 

 

300 25150
25

18 18
B C

a
R R

a a





   

 
 (O.K.) 
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Point of contraflexure 

Consider a section at a distance x from left support as shown in Fig. 3.53. Bending 

moment at this section is given by 

 
 

 
 

2 2300 25
2 5 2 5

2 18 2
x B

ax x
M R x x x x

a

 
 

 
            

  

 

From the given data, this is zero at x = 10m. Hence 

 
 

 

 
 

 
 

2

2

300 25
2 5 0

18 2

300 25 10
8 5 10 0

18 2

300 25
12.5

18

300 25 225 12.5  or 6m

a x
x x

a

a

a

a

a

a a a

 


 
      

  

 
     

  

 
 

  

   

 

 

 

 

 

300 25 300 25 6
12.5

18 18 6
B

a
R

a

 


  
  

 
 

   
150 150

12.5
18 18 6

CR
a

 
  

 
 

Zero Shear Force 

Consider a section at a distance y where Shear Force is zero as shown in Fig. 3.53. 

From similar triangles, we have 

 
5.5 6.5

 or 5.5m
12

y
y y

 


 

Bending Moment Values 

MD = 0 

26
18

2
CM        

22
5 2 12

2
BM           

MA = 0 

 
 

2
5.5 2

12.5 5.5 5 5.5 2 3.125
2

EM


  


        

Another point of contraflexure is 

 

 
 

2300 25 6 6
6 2 5 6

18 6 2
xM

 


  
      

  
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3.16 For the beam AC shown in Fig. 3.54, determine the magnitude of the load P acting 

at C such that the reaction at supports A and B are equal and hence draw the Shear 

force and Bending moment diagram. Locate points of contraflexure. (July 08) 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; 45 4A BR R P     01 

From the given data, RA = RB and substituting in Eq. 01, 2 2 180A BR R P    

Taking moment about A, 

 
4

0;6 7 45 4 30 or 6 7 390
2

A B BM R P R P
 

        
 

 

Substituting from Eq. 01, 

 3 180 7 390 or 37.5kNP P P     

Check 

Similarly taking moments about B, 

 
4

0;6 1 30 45 4 2
2

6 690

B A

A

M R P

R P

 
        

 

 

 

Substituting from Eq. 01,  3 180 690  or 37.5kNP P P     

Hence O.K. 

10 10

2 a 

A B C D 

x 

5 
/

—

5 
—7 

5.5

 

y 

SFD 

-12 
-18 

3.125 

BMD 
Fig. 3.53 

10m 10m 

2m a 

A B C D 

x 

5 
/m 

-5 
—7 

5.5

 
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2RA = 2RB = 180 + 37.5 = 217.5kN 

RA = RB = 108.75kN 

Zero Shear Force 

Consider a section at a distance x where Shear Force is zero as shown in Fig. 3.54. 

From similar triangles, we have 

 
108.75 71.25

 or 2.417m
4

x
x x

 


 

Bending Moment Values 

MC = 0 

37.5 1 37.5kNmBM       (Negative because Sagging) 

108.75 2 37.5 3 105kNm
RDM       

 
4

108.75 4 45 4 75kNm
2LDM

 
     

 
 (From left side forces) 

105 30 75kNm
LDM     (From Right side forces) 

MA = 0 

Maximum Bending moment occurs at zero shear force. i.e. at x = 2.417 

2 245 45 2.417
108.75 108.75 2.417 131.41kNm

2 2
x

x
M x

 
        

45kN/m 
P=? 

30kNm 

A 
D B 

C 

4m 3m 
1m 

108.75kN 

37.5kN 37.5kN 

-71.25kN -71.25kN 
SFD 131.41kN

75kN

105kN

-37.5kNm 
BMD 

Fig. 3.54 
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3.16. Draw the bending moment and shear force diagrams for a prismatic simply 

supported beam of length L, subjected to a clockwise moment M at the centre of the 

beam and a uniformly distributed load of intensity q per unit length acting over the 

entire span. (Jan 09) 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; kNA BR R q L    (01) 

Taking moment about A, 

2

0;
2

2

A B

B

q L
M R L M

q L M
R

L


    


 

 

Similarly taking moment about B, 

2

0;
2

2

B A

A

q L
M R L M

q L M
R

L


    


 

 

Check 

Substituting in Eq. 01, we have 

2 2
A B

q L M q L M
R R q L

L L

 
      (O.K.) 

Zero Shear Force 

Consider a section at a distance x where Shear 

Force is zero as shown in Fig. 3.55. From 

similar triangles, we have 

 
2 2

 or 
2

q L M q L M

L ML L
x

x L x q L

   
            

  
 

2 2

28 2 2

qL M M

q L
    

Bending Moment Values 

MB = 0 

MA = 0 

Bending Moment at zero Shear Force will be either Maximum or Minimum. 

2

2

2 2

max 2

2 2 2 2 2 2

8 2 2

x

q L M q q L M L M q L M
M x x

L L q L q L

qL M M
M

q L

       
                 
       

  

 

L 

A B 

RA RB 

C 

q/unit 

length 
M 

y 

x 

RA 

RB 

 

SFD 

2 2

28 2 2

qL M M

q L

 
  

  

BM

D Fig. 3.55 SS with UDL & 

Moment 
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3.17. For the loaded beam shown in Fig. 3.56, Draw the Shear Force and Bending 

Moment Diagram. Find and locate the Maximum +ve and —ve Bending Moments. 

Also locate the Point of Contraflexures. Detail the procedure to draw the SFD and 

BMD. (July 09) 

It can be seen the loading is symmetrical and the Reactions are equal. From the 

conditions of equilibrium 

VA = 0;  

 
1

2 2 2 20 10 2 20 2 or 50kN
2

A B A B A BR R R R R R
 

            
 

  

Bending Moment Values  

MF = MC = 0 

20 2 40kNmA BM M       

1 2 2
50 2 20 4 10 2 6.67kNm

2 3L RD EM M
  

          
  

 

6.67 10 3.33kNm
R LD EM M      

Maximum Bending Moment and Points of Contraflexure 

Maxumum Bending Moment 

Bending Moment at any section x in the region DE is given by 

 
 

2
21 2

50 20 2 10 2 20 10
2 3 2

x

x
M x x x

   
           

   
 

The Maximum bending moment occurs at zero shear force.  

i.e. x = (5-2) = 3 m 

 
 

2
3 21 2

50 3 20 3 2 10 2 3 20 10 6.67kNm
2 3 2

xM
   

             
   

 

 

Shear Force Diagram 

1. Draw a horizontal line C1F2 equal to the length of the beam 10m to some scale, 

under the beam CF as shown. 

2. Start the Shear force line from left extreme edge C1. Draw C1C2 under the 

vertical load 20kN acting at C downward equal to some scale. To start with, the 

shear force at C1=0 and at C2, the Shear force = 0 – 20 (-ve as it is acting 

downward) = -20 kN. 

3. There is no load in the region CA and hence under this region, the shear force 

line C2A1 will be a horizontal line parallel to beam axis. 
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4. At A, there is a reaction RA which is treated as vertical load = 50kN and hence 

the shear force line A1A2 = 50kN to some scale and the shear force at A2 = -20 + 

50 (+ as it is upward) = +30 kN. 

5. There is a uvl in the region AD and the shear force line will be a parabola in this 

region. The parabola will be tangential to vertical at A2 as there is relatively 

higher load intensity at A and will be parallel to horizontal at D1 as the load 

intensity is lesser at D. Hence the curve is sagging. The vertical distance from A2 

to D1 is equal to the total load equivalent to uvl, i.e. ½ x 10 x 2 = 10kN and the 

shear force at D1 = 30 - 10 (- as it is downward) = +20 kN. 

6. There is an udl in the region DE and hence the shear force line is inclined from 

D1 to E1. The vertical distance from D1 to E1 is equal to the total load equivalent 

to udl, i.e. 20 x 2 = 40kN and the shear force at E1 = 20 - 40 (- as it is downward) 

= -20 kN. 

7. There is a uvl in the region EB and the shear force line will be a parabola in this 

region. The parabola will be tangential to horizontal at E1 as there is relatively 

lower load intensity at E and will be parallel to vertical at B1 as the load intensity 

is higher at B. Hence the curve is hogging. The vertical distance from E1 to B1 is 

20kN 20kN 
20kN/m 

10kN/m 10kN/m 

2m 2m 2m 2m 2m 
10kNm 10kNm 

A C 
D E 

B F 

x 

—20kN 

30kN 

—20kN 

20kN 

—20kN 
—30kN 

20kN 20kN 

SFD 

C1 

C2 A1 

A2 D1 

E1 
B1 

B2 F1 

F2 

BMD 

Fig. 3.56 
—40kNm —40kNm 

-3.370kNm 

6.67kNm 
6.67kNm 6.67kNm 

C3 

A3 

D3 

D4 

E4 

E3 

B3 

F3 

G3 

G 
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equal to the total load equivalent to uvl, i.e. ½ x 10 x 2 = 10kN and the shear 

force at B1 = -20 - 10 (- as it is downward) = -30 kN. 

8. At B, there is a reaction RB which is treated as vertical load = 50kN and hence 

the shear force line B1B2 = 50kN to same scale and the shear force at B2 = -30 + 

50 (+ as it is upward) = +20 kN. 

9. There is no load in the region BF and hence under this region, the shear force 

line B2F1 will be a horizontal line parallel to beam axis. 

10. Draw F1F2 under the vertical load 20kN acting at F downward equal to same 

scale. The shear force at F2 = 20 – 20 = 0 (-ve as it is acting downward). Note 

that for the Shear Force Diagram to be precise, the shear force line must finally 

join the horizontal axis. If there is any shortage or surplus, the shear force 

diagram must be redrawn. 

11. The portion of the shear force diagram above the horizontal axis is +ve and the 

one below the horizontal axis is –ve. 

Bending Moment Diagram 

1. The Bending Moment is zero at the extreme edges of the beam unless there is an 

applied moment or couple acting at the edges, Hence the Moment at C = MC = 0 

i.e. at C3. 

2. The Bending moment at A is -40 kNm and hence the bending moment line is 

inclined under the no load portion CA (it can be either horizontal or inclined 

depending on the moments at the corresponding ends of the portion in the 

region). 

3. The region AD has a uvl and hence the bending moment line will be a cubic 

parabola (the index of BM is always one more than SF at any section and hence 

bending moment line is inclined under horizontal shear force line, parabola 

under inclined shear force line and cubic parabola under parabolic shear force 

line). The parabola joins the bending moment values at A3 is -40kNm and at D3 

is +6.67kNm (Bending moment to the left of D). The cubic parabola will be 

parallel to vertical at A3 and parallel to horizontal at D3 as  the absolute value of 

shear force at A2 = 30kN (more) compared to that at D1 = 20kN. 

4. The bending moment line is always a vertical line under the applied moment or 

couple. There is an clockwise applied moment of 10kNm acting at D and hence 

it is hogging. The vertical line D3D4 is downward and equal to the applied 
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moment to the same scale = 10kNm. The Bending moment value at D4 = -3.37 

kNm 

5. The region DG is acted upon by udl, the shear force line is inclined and the 

bending moment line will be a parabola from D4 to G3. The parabola is joining 

Bending moment at D4 = -3.37 to that at G3 = 6.67kNm. The bending moment 

line will be tangential to vertical at D4 and tangential to horizontal at G3 as the 

shear force at D1 = 20kN which is relatively higher than at G which is 0. 

6. The region GE is acted upon by udl, the shear force line is inclined and the 

bending moment line will be a parabola from G3 to E3. The parabola is joining 

Bending moment at G3 = 6.67 to that at E3 = -3.37kNm. The bending moment 

line will be tangential to horizontal at G3 and tangential to vertical at E3 as the 

absolute shear force at G = 0kN which is relatively lesser than at E3 =3.37kNm. 

7. There is an anti-clockwise applied moment of 10kNm acting at E and hence it is 

sagging. The vertical line E3E4 is upward and equal to the applied moment to the 

same scale = 10kNm. The Bending moment value at E4 = 6.67 kNm 

8. The region EB has a uvl and hence the bending moment line will be a cubic 

parabola. The parabola joins the bending moment values at E4 is 6.67kNm 

(Bending moment to the right of E) and at B3 is -40kNm. The cubic parabola will 

be tangential to horizontal at E4 and parallel to vertical at B3 as  the absolute value 

of shear force at E1 = 20kN (less) compared to that at B1 = 30kN. 

9. The Bending moment at B is -40 kNm and hence the bending moment line is 

inclined under the no load portion BF to join the horizontal axis at F3 where the 

bending moment is zero. 
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Ques tion paper problems  of Mechanical Engineering 06ME34 

3.19 Draw the shear force and bending moment diagrams for a overhanging beam shown 

in Fig. 3.57. Find and locate the points of contraflexure. (July 09) 

 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; 
1

10 2 40 20 2 20 100kN
2

B DR R          (01) 

Taking moment about B, 

 
2 1 2 2

0;4 10 2 40 2 20 2 2 20 6
2 2 3

246.67
61.67kN

4

B D

D

M R

R

    
               

    

 

 

Similarly taking moment about D, 

   
2 1 2 1

0;4 20 2 10 2 4 40 2 20 2
2 2 3

153.33
38.33kN

4

D B

B

M R

R

    
               

    

 

 

Check 

Substituting in Eq. 01, we have RB + RD = 38.33 + 61.67 =100 kN (O.K.) 

Bending Moment Values 

ME = 0 

20 2 40kNDM       

1 2 2
61.67 2 20 4 20 2 16.67kNm

2 3
CM

  
         

  
 

 
2

10 2 20kNm
2

BM
 

     
 

 

MA = 0 

Points of Contraflexures 

Bending moment at any section x from the left support 

For region CD 

    
 

 
2

21 2
38.33 10 2 1 40 2 20 2

2 2 3
x

x
M x x x x

              
  
 

 

For Point of contraflexure, Mx = 0, solving, we get x = 2.713m 

For region BC   38.33 10 2 1xM x x     

For Point of contraflexure, Mx = 0, solving, we get x = 1.09m 
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From second method, consider the similar triangles between BC, 

2
 or 1.09m

20 16.67

x x
x


   

3.20 For the beam shown in Fig.3.58, draw the shear force and bending moment diagram 

and locate the Point of contraflexure if any. (Jan 09) 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; 10 2 30 40 20 4 170kNB DR R         (01) 

Taking moment about B, 

   
2 4 720

0;6 10 2 30 2 40 4 20 4 4  or 120kN
2 2 6

B D DM R R
   

               
   

 

Similarly taking moment about D, 

 
2 300

0;6 10 2 4 30 4 40 2 or 50kN
2 6

D B BM R R
 

           
 

 

Check 

Substituting in Eq. 01, we have RB + RD = 50 + 120 =170 kN (O.K.) 

Bending Moment Values 

ME = 0 

 
2

20 2 40kN
2

DM
 

     
 
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20kN/
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18.33k
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Fig. 3.57 
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 
4

120 2 20 4 80kNm
2

CM
 

     
 

 

 
2

50 2 10 2 80kNm
2

BM
 

     
 

 

MA = 0 

Points of Contraflexures 

Bending moment at any section x from the left support 

For region CD 

    
 

 
2

21 2
38.33 10 2 1 40 2 20 2

2 2 3
x

x
M x x x x

              
  
 

 

For Point of contraflexure, Mx = 0, solving, we get x = 2.713m 

For region BC   38.33 10 2 1xM x x     

For Point of contraflexure, Mx = 0, solving, we get x = 1.09m 

From second method, consider the similar triangles between BC, 

2
 or 1.09m

20 16.67

x x
x


   

3.21 For the beam shown in Fig. 3.59, obtain SFD and BMD. Locate Points of 

contraflexure, if any. (July 09) 

The reactions can be obtained from the conditions of equilibrium. 

40kN 30kN 
10kN/

2m 2m 2m 2m 

A 
E C D B 

x 

BMD 

Fig. 3.58 
—40kNm 

80kNm 

x 

20kN/

30k

-80kN 

-40kN 

SFD 

50k 40k
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VA = 0; 5 8 50 90kNB DR R      (01) 

Taking moment about B, 

 
8 800

0;16 120 5 8 50 12 160 or 50kN
2 16

B D DM R R
 

          
 

 

Similarly taking moment about D, 

 
8 640

0;16 160 5 8 8 50 4 120 or 40kN
2 16

D B DM R R
 

           
 

 

Check 

Substituting in Eq. 01, we have RB + RD = 40 + 50 =90 kN (O.K.) 

Bending Moment Values 

MDR = 0 

160kNmALM    

50 4 160 40kNmCM      

50 8 50 4 160 40kNmBM        

120kNmARM    

MAL = 0 

Points of Contraflexures 

Bending moment at any section x from the left support 

For region AB 

25
40 120 0 or 4m

2
x

x
M x x

 
      

 

 

-50kN 

10

C 

y SFD 

-120kNm 

40kNm 

BMD 

Fig. 3.59 
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D x 
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Point of contraflexure is x = 4m from the left support. 

For region CD 50 160 0 or 3.2myM y y     

For Point of contraflexure is y = 3.2m from the right support. 

From second method, consider the similar triangles between CD 

4
 or 3.2m

160 40

y y
y


   

A beam ABCD, 8m long has supports at A and at C which is 6m from point A. The beam 

carries a UDL of 10kN/m between A and C. At point B a 30kN concentrated load acts 2m 

from the support A and a point load of 15kN acts at the free end D. Draw the SFD and 

BMD giving salient values. Also locate the point of contra-flexure if any. (14)(July 2015) 

 

From the conditions of equilibrium, we have algebraic sum of vertical forces to be zero. 

Algebraic sum of moments about any point is zero. Taking moments about A, we get 

Taking moments about C, we get 

Shear Force Diagram can be directly drawn. 

Bending Moment values: 

Unless there are end moments of the beam, the Moments are zero at ends of the beam. 

2m 4m 2m 

30kN 15kN 
10kN/m 

A B C D 

    0; 30 15 10 6 105 kN A CV R R        

        

 

6
0; 6 30 2 15 8 10 6 360 kN 

2

60kN

A C

C

M R

R

 
        

 

 

        

 

6
0; 6 15 2 30 4 10 6 270 kN 

2

45kN

C A

A

M R

R

 
        

 

 

     

  

0 and 0

2
45 2 10 2 70kNm

2

M 15 2 30kNm

A D

B

C

M M

M

 

 
     

 

   

 Check: 45 60 105 kN A CR R    
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To locate the point of contra-flexure where the bending moment changes its sign, consider 

the section to be at a distance x towards left of the right support as shown. The bending 

moment at the section is given by 

Hence the point of contra-flexure is at 0.725m to left of right support. 

 

Draw the Shear force and bending moment diagrams for the Fig. shown (10) July 2016 

From the conditions of equilibrium, we have algebraic sum of vertical forces to be zero. 

Algebraic sum of moments about any point is zero. Taking moments about A, we get 

Taking moments about B, we get 

     

2

60 15 2 10 0
2

45 30 5 0

Solving, 0.725m and 8.275m

x

x
M x x x

x x

x

 
     

 

  



2m 4m 2m 

40kN 
15kN/m 

D E F C A 

10kN/m 

B 

1m 1m 

       0; 15 2 40 10 2 90 kN A BV R R        

        

 

2 2
0; 8 15 2 1 40 1 2 1 10 2 8 400 kN 

2 2

50kN

A B

B

M R

R

   
                  

   

 

2m 4m 2m 

30kN 15kN 

10kN/m 

A B C D 

45kN 60kN 

x 

Loading Diagram 

45kN 
25kN 

5kN 

5kN 

15kN 15kN 

 

 
 

SFD 

 

 

30kNm 

Point of contra-flexure 
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BMD 
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Shear Force Diagram can be directly drawn. 

Bending Moment values: 

Unless there are end moments of the beam, the Moments are zero at ends of the beam. 

     

     

  

2
M 40 3 15 2 90kNm

2

2
M 40 4 15 2 1 100kNm

2

2
M 10 2 20kNm

2

E

F

B

 
     

 

 
      

 

 
      

 

 

 

To locate the point of contra-flexure where the bending moment changes its sign, consider 

the section to be at a distance x towards left of the right support as shown. Bending 

        

 

 

2 2
0; 8 10 2 40 4 15 2 4 1 340 kN 

2 2

40kN

Check: 40 50 90 kN 

B A
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A B
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R R

   
                

   

 

    

  

0 and 0
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A C
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moment inclined line is crossing zero line as a straight line forming two alternate triangles 

which are similar. Hence using similar triangle properties 

Hence the point of contra-flexure is at 0.67m to left of right support. 

 

Draw Shear force and Bending moment Diagram for the beam shown in Fig. 

 

 

4 100

20

Solving, 0.67m

x

x

x






2m 4m 2m 

40kN 
15kN/m 

D E F C 
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1m 1m 
40kN 50kN 

Loading Diagram 
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10kN 

5kN 
kN 

20kN 
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 
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SFD 

40kN 

10kN 

kN 
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 

20kNm 
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x 

BMD 

40kNm 

90kNm 100kN

4m 2m 

80kN 

C A 

20kN/m 
B 

D
2m 

    

Fromthe conditions of equilibrium,  we have algebraic sum of vertical forces to be zero.

0; 20 4 80 160 kN A BV R R       

     

 

4
0; 8 20 4 80 4 2 640 kN 

2

80kN

A B

B

M R

R

 
        

 

 

no
tes

4f
ree

.in



 
 

 
 

Algebraic sum of moments about any point is zero. Taking moments about A, we get 

 
Shear Force Diagram can be directly drawn. 

Bending Moment values: 

Unless there are end moments of the beam, the Moments are zero at ends of the beam. 
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Taking moments about B,  we get
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COLUMNS AND STRUTS

Strength of Materials
Program No. 23

Learning Outcome

The students are introduced to

• the concepts of Elastic Stability of Columns 

and struts

• Euler’s Theory for critical load in long 

columns for different cases
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Slender Column ?
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Typical failure of columns
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Columns

and

Struts

Structural members 

Compressive forces

Lengths are large compared to lateral 

dimensions

Often subjected to axial forces

Although – loaded eccentrically

Columns are vertical compressive members

Struts are Inclined compressive members
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Radius of Gyration

It is the distribution of the components of an object

around an axis. It is the perpendicular distance from

the axis of rotation to a point of mass that gives an

equivalent inertia to the original object.

It has the unit of length
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Note - Material and geometric properties same in 

above columns

Effective length depends on its end conditions

Effective Length of Column (le)

It is the length of an imaginary column with both ends 

hinged and whose critical load is same as that of 

actual column with given end conditions.
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SLENDERNESS RATIO (λ)
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CLASSIFICATION OF COLUMNS
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Short Compression 

Member

Short Column

Essentially fails by bulging or crushing

and not by buckling

no
tes

4f
ree

.in



COLUMNS AND STRUTS

Strength of Materials
Program No. 23

Short Column

Essentially fails by bulging or crushing and not by buckling

P

P

Ductile Material
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Short Column

Essentially fails by bulging or crushing and not by buckling
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Long Column

Essentially fails by buckling and not by crushing

Stress at failure  <  yield stress
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Long Column

Essentially fails by buckling and not by crushing

Stress at failure  <  yield stress
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Intermediate Column :

Fails by a combination of crushing and buckling

if 
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CRITICAL LOAD AND BUCKLING

Long column : P – Axial load     F – a small test load – lateral direction
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CRITICAL LOAD AND BUCKLING

Long column : P – Axial load     F – a small test load – lateral direction
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Effective Lengths for some standard cases
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Buckling behaviour for different end conditions

no
tes

4f
ree

.in



COLUMNS AND STRUTS

Strength of Materials
Program No. 23

EULER’S THEORY

Theoretical analysis to estimate critical load for 

long columns

- Great Swiss mathematician Leonard Euler 

(pronounced as Oiler), 

- Developed in 1757no
tes
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ASSUMPTIONS IN EULER’S THEORY

• The column is long and fails by buckling

• The column is axially loaded

• The column is perfectly straight and the cross 

sections are uniform (prismatic) 

• The column is initially free from stress

• The column is perfectly elastic, homogenous and 

isotropic
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Case (1) Both ends hinged

Long column with both ends hinged 

subjected to critical load P

Bending moment in terms of load P and deflection y is

M = – P y ---------(1)

EULERS CRITICAL LOAD FOR LONG COLUMNS
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For beams / columns the bending moment is proportional to the 

curvature of the beam, which, for small deflection can be expressed as 

Where E – Young’s modulus, I – Moment of Inertia 

Substituting eq.(1) in eq.(2)

or

or --------------(2)
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--------(3)

Constants can be evaluated by applying the boundary conditions

Where C1 and C2 are constants

Second order differential equation The general solution is of form
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Boundary condition (i)

y = 0  at  x =0

From eq. (3)

--------(3)
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--------(3)

y = 0  at  x = L

From eq. (3)

Here either or

Boundary condition (ii)
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Hence or

Taking least significant value of n, i.e. n=1, we have

or

Here, n =0,1,2,3….....
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Euler’s Critical Load for Long Columns
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Summary

You were introduced to terminologies

• Columns & Struts

• Long, Intermediate & Short Columns

• Slenderness Ratio

• Effective Length of column

• Critical Load

We derived expression for critical load of column 

with both ends hinged
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Built-up Section

It is a structural member made from individual plates

or tubes or angles riveted / welded / bolted together to

improve its strength and stiffness in steel construction

industry.
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Module 5: Theories of Failure 

 
Objectives: 

 
The objectives/outcomes of this lecture on “Theories of Failure” is to enable 
students for 

1. Recognize loading on Structural Members/Machine elements and 
allowable stresses. 

2. Comprehend the Concept of yielding and fracture. 
3. Comprehend Different theories of failure. 

4. Draw yield surfaces for failure theories. 
5. Apply concept of failure theories for simple designs 

 
 

1. Introduction: 
 

Failure indicate either fracture or permanent deformation beyond the 
operational range due to yielding of a member. In the process of designing a 

machine element or a structural member, precautions has to be taken to avoid 
failure under service conditions. 
 

When a member of a structure or a machine element is subjected to a system of 
complex stress system, prediction of mode of failure is necessary to involve in 

appropriate design methodology. Theories of failure or also known as failure 
criteria are developed to aid design. 

 
1.1 Stress-Strain relationships: 

Following Figure-1 represents stress-strain relationship for different type of 
materials. 
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Figure-1: Stress-Strain Relationship 

 
 

 
Bars of ductile materials subjected to tension show a linear range within which 
the materials exhibit elastic behaviour whereas for brittle materials yield zone 

cannot be identified. In general, various materials under similar test conditions 
reveal different behaviour. The cause of failure of a ductile material need not be 

same as that of the brittle material. 
 

1.2 Types of Failure: 
 

The two types of failure are, 
 

Yielding - This is due to excessive inelastic deformation rendering the 
structural member or machine part unsuitable to perform its function. This 

mostly occurs in ductile materials. 
 

Fracture - In this case, the member or component tears apart in two or more 
parts. This mostly occurs in brittle materials. 
 

1.3 Transformation of plane stress: 
 

  
Ductile material e.g. low carbon steel Low ductility 

  
Brittle material Elastic – perfectly plastic material 
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For an element subjected to biaxial state of stress the normal stress on an 

inclined plane is determined as, 

    
     

 
 
     

 
                  - Eq-1 

Similarly, on the same inclined plane the value of the shear stress is determined 

as, 

      
     

 
                   - Eq-2 

The above equations (Eq-1 and Eq-2) are used to determine the condition when 
the normal stress and shear stress values are maximum/minimum by 
differentiating them with respect to θ and equating to zero. The substitution of 

the results in these equations determines maximum and minimum normal stress 
known as principal stresses and maximum shear stress as indicated by the 

following expressions (Eq-3 and Eq-4). 
  

         
     

 
 √(

     

 
)
 

    
   - Eq.-3 

 

     √(
     

 
)
 

    
     - Eq-4 

1.4 Use of factor of safety in design: 
In designing a member to carry a given load without failure, usually a factor of 

safety (FS or N) is used. The purpose is to design the member in such a way that 
it can carry N times the actual working load without failure. Factor of safety is 
defined as Factor of Safety (FS) = Ultimate Stress/Allowable Stress. 

 
2. Theories of Failure: 

 
a) Maximum Principal Stress Theory (Rankine Theory) 

b) Maximum Principal Strain Theory (St. Venant’s theory) 
c) Maximum Shear Stress Theory (Tresca theory) 

d) Maximum Strain Energy Theory (Beltrami’s theory) 
 

2.1 Maximum Principal Stress Theory (Rankine theory) 
 

According to this, if one of the principal stresses σ1 (maximum principal stress), 
σ2 (minimum principal stress) or σ3 exceeds the yield stress (σy), yielding would 
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occur. In a two dimensional loading situation for a ductile material where 

tensile and compressive yield stress are nearly of same magnitude 
 

σ1 = ± σy  σ2 = ±σy 
 
Yield surface for the situation is, as shown in Figure-2 

 
 

 

 
Figure- 2: Yield surface corresponding 

to maximum principal stress theory 
 

Yielding occurs when the state of stress is at the boundary of the rectangle. 
Consider, for example, the state of stress of a thin walled pressure vessel. Here 

σ1= 2σ2, σ1 being the circumferential or hoop stress and σ2 the axial stress. As 
the pressure in the vessel increases, the stress follows the dotted line. At a point 

(say) a, the stresses are still within the elastic limit but at b, σ1 reaches σy 
although σ2 is still less than σy. Yielding will then begin at point b. This theory 
of yielding has very poor agreement with experiment. However, this theory is 

being used successfully for brittle materials. 
 

 
2.2 Maximum Principal Strain Theory (St. Venant’s Theory) 

 
According to this theory, yielding will occur when the maximum principal 

strain just exceeds the strain at the tensile yield point in either simple 
tension or compression.  If  ε1   and  ε2   are  maximum  and  minimum  

principal  strains corresponding to σ1 and σ2, in the limiting case 

 
ε1 = (1/E)(σ1- νσ2)   |σ1| ≥ |σ2| 
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ε2 = (1/E)(σ2- νσ1)   |σ2| ≥ |σ1| 

 
This results in, 

 
E ε1 = σ1- νσ2 = ± σ0 
E ε2 = σ2- νσ1 = ± σ0 

 
The boundary of a yield surface in this case is shown in Figure – 3. 

 
 

 
Figure-3: Yield surface corresponding to  

maximum principal strain theory 
 
 

 
2.3 Maximum Shear Stress Theory (Tresca theory) 

 
According to  this theory, yielding  would occur when the maximum shear 
stress just exceeds the shear stress at the tensile yield point. At the tensile 

yield point σ2= σ3 = 0 and thus maximum shear stress is σy/2. This gives us 

six conditions for a three-dimensional stress situation: 
 

σ1- σ2 = ± σy 
σ2- σ3 = ± σy 

σ3- σ1 = ± σy 
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Figure – 4: Yield surface corresponding 

to maximum shear stress theory 
 
 

In a biaxial stress situation (Figure - 4) case, σ3 = 0 and this gives 

 
σ

1 − σ
2  = σ

y   if σ
1  > 0, σ

2 < 0 

σ
1 − σ

2 = −σ
y  if σ

1 < 0, σ
2  > 0 

σ
2  = σ

y   if σ
2  > σ

1  > 0 

σ
1  = −σ

y   if σ
1 < σ

2   < 0 
σ

1 = −σ
y   if σ

1  > σ
2   > 0 

σ
2 = −σ

y   if σ
2  < σ

1   < 0 

 
This criterion agrees well with experiment. 

 
In the case of pure shear, σ1 = - σ2 = k (say), σ3 = 0 

and this gives σ1- σ2 = 2k= σy 

This indicates that yield stress in pure shear is half the tensile yield stress and 
this is also seen in the Mohr’s circle (Figure - 5) for pure shear. 

 
 

 
Figure – 5: Mohr’s circle for 
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pure shear 

 
2.4 Maximum strain energy theory (Beltrami’s theory) 

 
 
According to this theory failure would occur when the total strain energy 

absorbed at a point per unit volume exceeds the strain energy absorbed per 
unit volume at the  tensile  yield  point.  This may be expressed as, 

 
 

(1/2)(σ1 ε1 + σ2 ε2 + σ3 ε3)  = (1/2) σy εy 
 

Substituting ε1, ε2, ε3  and εy in terms of the stresses we have 
 

σ1
2
 + σ2

2
 + σ3

2
 - 2 υ (σ1 σ2 + σ2 σ3 + σ3σ1) = σy

2
 

(σ1/ σy)
2
 + (σ2/ σy)

2
 - 2ν(σ1 σ2/ σy

2
) = 1 

 
The above equation represents an ellipse and the yield surface is shown in 

F igure - 6 
 
 

 
Figure – 6: Yield surface corresponding 
to Maximum strain energy theory.  

 
It has been shown earlier that only distortion energy can cause yielding but in 

the above expression at sufficiently high hydrostatic pressure σ1 = σ2 = σ3 = σ 

(say), yielding may also occur. From the above we may write σ
2
(3 − 2ν) = σy

2
 

and if ν ~ 0.3, at stress level lower than yield stress, yielding would occur. This 
is in contrast to the experimental as well as analytical conclusion and the 

theory is not appropriate. 
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2.5 Superposition of yield surfaces of different failure theories: 

A comparison among the different failure theories can be made by superposing 
the yield surfaces as shown in figure – 7. It is clear that an immediate 

assessment of failure probability can be made just by plotting any experimental 
in the combined yield surface. Failure of ductile materials is most accurately 
governed by the distortion energy theory where as the maximum principal strain 

theory is used for brittle materials. 
 

 
Figure – 7: Comparison of different failure theories 

 

 
Numerical-1: A shaft is loaded by a torque of 5 KN-m. The material 

has a yield point of 350 MPa. Find the required diameter using Maximum 
shear stress theory. Take a factor of safety of 2.5. 

 
Torsional Shear Stress, τ= 16T/πd

3
, where d represents diameter of the shaft 

 

Maximum Shear Stress theory,      √(
     

 
)
 

    
  

 
 

Factor of Safety (FS) = Ultimate Stress/Allowable Stress 
 
Since σx = σy = 0, τmax = 25.46 X 10

3
/d

3
 

 
Therefore 25.46 X 10

3
/d

3
 = σy/(2*FS) = 350*10

6
/(2*2.5) 

 
Hence, d = 71.3 mm 
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Numerical-2: The state of stress at a point for a material is shown in 

the following figure Find the factor of safety using (a) Maximum shear 
stress theory Take the tensile yield strength of the material as 400 MPa. 

 
 
From the Mohr’s circle shown below we determine, 
 

σ1 = 42.38MPa and 
σ2 = -127.38MPa 

 
from Maximum Shear Stress theory 

 
(σ1 - σ2)/2= σy/(2*FS) 

 
By substitution and calculation factor of safety FS = 2.356 

 
 
 

Numerical-3: A cantilever rod is loaded as shown in the following 
figure. If the tensile yield strength of the material is 300 MPa determine the 
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rod diameter using (a) Maximum principal stress theory (b) Maximum 

shear stress theory  

 
 
At the outset it is necessary to identify the mostly stressed element. Torsional 

shear stress as well as axial normal stress is the same throughout the length of 
the rod but the bearing stress is largest at the welded end. Now among the four 

corner elements on the rod, the element A is mostly loaded as shown in 
following figure 

 

 
 

Shear stress due to bending VQ/It is also developed but this is neglected due to 
its small value compared to the other stresses. Substituting values of T, P, F and 
L, the elemental stresses may be shown as in following figure. 
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The principal stress for the case is determined by the following equation, 

 
By Maximum Principal Stress Theory, Setting, σ1 = σy we get d = 26.67mm 
 

 
By maximum shear stress theory by setting (σ1 – σ2)/2 = σy/2, we get, d = 
30.63mm 

 
Numerical-4: The state of plane stress shown occurs at a critical point 

of a steel machine component. As a result of several tensile tests it has been 
found that the tensile yield strength is σy=250MPa for the grade of steel 

used. Determine the factor of safety with respect to yield using maximum 
shearing stress criterion. 

 

 
 

Construction of the Mohr’s circle determines 
 

σavg = ½ (80-40) = 20MPa and τm= (60
2
+25

2
)
1/2

 = 65MPa 
σa= 20+65 = 85 MPa and σb= 20-65 = -45 MPa 

 
The corresponding shearing stress at yield is τy= ½ σy = ½ (250) = 125MPa 

 
Factor of safety, FS = τm/ τy = 125/65 = 1.92 
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Summary: 

Different types of loading and criterion for design of structural 
members/machine parts subjected to static loading based on different failure 

theories have been discussed. Development of yield surface and optimization of 
design criterion for ductile and brittle materials were illustrated. 

 
 

Assignments: 
 

Assignment-1: A Force F = 45,000N is necessary to rotate the shaft shown 
in the following figure at uniform speed. The crank shaft is made of ductile steel 

whose elastic limit is 207,000 kPa, both in tension and compression. With E = 
207 X 10

6
 kPa  and ν = 0.25, determine the diameter of the shaft using 

maximum shear stress theory, using factor of safety = 2. Consider a point on the 

periphery at section A for analysis (Answer, d = 10.4 cm) 

 
Assignment-2: Following figure shows three elements a, b and c subjected 

to different states of stress. Which one of these three, do you think will yield 
first according to i) maximum stress theory, ii) maximum strain theory, and iii) 

maximum shear stress theory? Assume Poisson’s ratio ν = 0.25 [Answer: i) b, 
ii) a, and iii) c] 
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Assignment-3: Determine the diameter of a ductile steel bar if  the tensile 

load F is 35,000N and the torsional moment T is 1800N.m. Use factor of safety 
= 1.5. E = 207*10

6
kPa and σyp = 207,000kPa. Use the maximum shear stress 

theory. (Answer: d = 4.1cm) 

 
 
 

Assignment-4: At a pint in a steel member, the state of stress shown in 
Figure. The tensile elastic limit is 413.7kPa. If the shearing stress at a point is 

206.85kPa, when yielding starts, what is the tensile stress σ at the point 
according to maximum shearing stress theory? (Answer: Zero) 
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